我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

毕达哥拉斯和直角三角形

快捷方式: 差异相似杰卡德相似系数参考

毕达哥拉斯和直角三角形之间的区别

毕达哥拉斯 vs. 直角三角形

毕达哥拉斯(Πυθαγόρας,约)是一名古希腊哲学家、数学家和音乐理论家,毕达哥拉斯主义的创立者。 他認為數學可以解釋世界上的一切事物,對數字癡迷到幾近崇拜;同時認為一切真理都可以用比例、平方及直角三角形去反映和證實:譬如主張平方數"100"意味「公正」。. 有一个角为直角的三角形称为直角三角形。在直角三角形中,直角相邻的两条边称为直角边。直角所对的边称为斜边。直角三角形直角所对的边也叫作「弦」。若兩條直角邊不一樣長,短的那條邊叫作「勾」,長的那條邊叫作「股」。 直角三角形满足畢氏定理(勾股定理),即两直角边边长的平方和等于斜边长的平方。直角三角形各邊和角之間的關係也是三角學的基礎。 直角三角形的外心是斜边中点;其垂心是直角顶点。 若直角三角形的三邊均為整數,稱為畢氏三角形,其邊長稱為勾股數。 埃及將邊長比例為3:4:5的直角三角形称为埃及三角形。.

之间毕达哥拉斯和直角三角形相似

毕达哥拉斯和直角三角形有(在联盟百科)3共同点: 平方勾股定理黃金比例

平方

代数中,一个数的平方是此数与它的本身相乘所得的乘积,一个元素的平方是此元素与它的本身相乘所得的乘积,记作x2。平方也可視為求指數为2的幂的值。若x是正实数,这个乘积相当于一个边长为x的正方形的面积;如果x为虚数,则这个乘积为负数。如果x为非虛數的复数,则这个乘积也是复数。 如果实数y.

平方和毕达哥拉斯 · 平方和直角三角形 · 查看更多 »

勾股定理

氏定理(Pythagorean theorem)(希腊语:Πυθαγόρειο θεώρημα)又称商高定理、畢達哥拉斯定理、--、百牛定理,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。 勾股定理是人类早期发现并证明的重要数学定理之一。 据《周髀算經》中记述,公元前一千多年周公与商高论数的对话中,商高就以三四五3个特定数为例详细解释了勾股定理要素,其一,“以为句广三,股修四,径隅五”。其二,“既方其外,半之一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”首先肯定一个底宽为三,高为四的直角三角形,弦长必定是五。最重要的是紧接着论证了弦长平方必定是两直角边的平方和,确立了直角三角形两条直角边的平方和等于斜边平方的判定原则。其判定方法后世不明其法而被忽略。 此外,《周髀算经》中明确记载了周公后人陈子叙述的勾股定理公式:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日”。 赵爽在《周髀算經注》中将勾股定理表述为“勾股各自乘,并之,为弦实。开方除之,即弦”。 古埃及在公元前2600年的纸莎草就有(3,4,5)这一组勾股数,而古巴比伦泥板涉及的最大的一个勾股数组是(12709,13500,18541)。 有些參考資料提到法国和比利時將勾股定理称为驴桥定理,但驴桥定理就是等邊對等角,是指等腰三角形的二底角相等,非勾股定理。.

勾股定理和毕达哥拉斯 · 勾股定理和直角三角形 · 查看更多 »

黃金比例

#重定向 黄金分割率.

毕达哥拉斯和黃金比例 · 直角三角形和黃金比例 · 查看更多 »

上面的列表回答下列问题

毕达哥拉斯和直角三角形之间的比较

毕达哥拉斯有37个关系,而直角三角形有26个。由于它们的共同之处3,杰卡德指数为4.76% = 3 / (37 + 26)。

参考

本文介绍毕达哥拉斯和直角三角形之间的关系。要访问该信息提取每篇文章,请访问: