我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

比例和通約性

快捷方式: 差异相似杰卡德相似系数参考

比例和通約性之间的区别

比例 vs. 通約性

在数学中,比例是兩個非零數量y與x之間的比較關係,記為y:x \; (x, y \in \mathbb),在計算時則更常寫為\frac或y/x。若两个變量的关系符合其中一个量是另一个量乘以一个常数(y. 假若,兩個不等於零的实数 a\,\! 與 b\,\! 的除商 \frac\,\! 是一個有理數,或者說,a 與 b 的比例相等於兩個非零整數 p 與 q 的比例: 則稱它們是互相可通約的(commensurable),而這特性則稱為通約性。這意味著,存在一個非零的實數公測數 (common measure) m \ (m \in R),使得 所以 或是 其中 \frac \in Q,所以 \frac \in Q。 反之,如果該二數的除商是一個無理數,則稱它們是不可通約的(incommensurable),亦即,a 與 b 之間不存在一個公測數 m \ (m \in R, m \neq 0) 使得.

之间比例和通約性相似

比例和通約性有(在联盟百科)5共同点: 几何原本無理數欧几里得比例論有理数

几何原本

《几何原本》(Στοιχεῖα)是古希腊数学家欧几里得所著的一部数学著作,共13卷。这本著作是现代数学的基础,在西方是仅次于《圣经》而流传最广的书籍。在四庫全書中為子部天文演算法算書類。.

几何原本和比例 · 几何原本和通約性 · 查看更多 »

無理數

無理數是指除有理数以外的实数,當中的「理」字来自于拉丁语的rationalis,意思是「理解」,实际是拉丁文对于logos「说明」的翻译,是指无法用两个整数的比来说明一个无理数。 非有理數之實數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會循環,即无限不循环小数。常見的無理數有大部分的平方根、π和e(其中後兩者同時為超越數)等。無理數的另一特徵是無限的連分數表達式。 傳說中,无理数最早由畢達哥拉斯學派弟子希伯斯发现。他以幾何方法證明\sqrt無法用整数及分數表示。而畢達哥拉斯深信任意数均可用整数及分数表示,不相信無理數的存在。後來希伯斯触犯学派章程,将无理数透露给外人,因而被扔进海中处死,其罪名竟然等同于“渎神”。另見第一次數學危機。 無理數可以通過有理數的分划的概念進行定義。.

比例和無理數 · 無理數和通約性 · 查看更多 »

欧几里得

欧几里得(Ευκλειδης,前325年—前265年),有时被称为亚历山大里亚的欧几里得,以便区别于墨伽拉的欧几里得,希腊化时代的数学家,被稱為「几何學之父」。他活躍於托勒密一世時期的亚历山大里亚,也是亚历山太学派的成员。他在著作《几何原本》中提出五大公設,成為欧洲数学的基础。歐幾里得也寫過一些關於透視、圓錐曲線、球面幾何學及數論的作品。歐幾里得幾何被广泛的认为是數學領域的經典之作。.

欧几里得和比例 · 欧几里得和通約性 · 查看更多 »

比例論

在數學中,一個等比關係(proportion)指的是兩個比例(英語:ratio 或 proportionality)的相等關係,記為 a:b.

比例和比例論 · 比例論和通約性 · 查看更多 »

有理数

数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.

有理数和比例 · 有理数和通約性 · 查看更多 »

上面的列表回答下列问题

比例和通約性之间的比较

比例有43个关系,而通約性有28个。由于它们的共同之处5,杰卡德指数为7.04% = 5 / (43 + 28)。

参考

本文介绍比例和通約性之间的关系。要访问该信息提取每篇文章,请访问: