我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

正态分布和矩 (數學)

快捷方式: 差异相似杰卡德相似系数参考

正态分布和矩 (數學)之间的区别

正态分布 vs. 矩 (數學)

常態分布(normal distribution)又名高斯分布(Gaussian distribution),是一個非常常見的連續機率分布。常態分布在统计学上十分重要,經常用在自然和社会科学來代表一個不明的隨機變量。 若隨機變量X服從一個位置參數為\mu、尺度參數為\sigma的常態分布,記為: 則其機率密度函數為 常態分布的數學期望值或期望值\mu等於位置參數,決定了分布的位置;其方差\sigma^2的開平方或標準差\sigma等於尺度參數,決定了分布的幅度。 常態分布的機率密度函數曲線呈鐘形,因此人們又經常稱之為鐘形曲線(类似于寺庙里的大钟,因此得名)。我們通常所說的標準常態分布是位置參數\mu. 矩,又稱動差,英文為moment。 数学中矩的概念来自于物理学。在物理学中,矩是用来表示物体形状的物理量。矩是用于物体形状识别的重要参数指标。定义在实数域上的实函数相对于值c的n阶矩为: 總的來說,在數學中,矩的概念是用來度量一組具有一定形態特點的點陣。舉個常用的例子,一個“二階矩”,我們在一維上可以測量它的“寬度”;而在更高階的維度上,由於其適用於橢球的空間分佈,我們還可以對點的云結構進行測量和描述。其他的矩用來描述諸如與均值的歪斜分佈情況(偏態),或峰值的分佈情況(峰態)等其他方面的分佈特點。.

之间正态分布和矩 (數學)相似

正态分布和矩 (數學)有(在联盟百科)3共同点: 物理学期望值方差

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

正态分布和物理学 · 物理学和矩 (數學) · 查看更多 »

期望值

在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望,物理学中称为期待值)是试验中每次可能的结果乘以其结果概率的总和。换句话说,期望值像是随机试验在同样的机会下重复多次,所有那些可能狀態平均的结果,便基本上等同“期望值”所期望的數。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合裡。) 例如,掷一枚公平的六面骰子,其每次「點數」的期望值是3.5,计算如下: \operatorname(X)&.

期望值和正态分布 · 期望值和矩 (數學) · 查看更多 »

方差

方差(Variance),應用數學裡的專有名詞。在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二階中心動差,恰巧也是它的二阶累积量。這裡把複雜說白了,就是將各個誤差將之平方(而非取絕對值,使之肯定為正數),相加之後再除以總數,透過這樣的方式來算出各個數據分佈、零散(相對中心點)的程度。繼續延伸的話,方差的算术平方根称为该随机变量的标准差(此為相對各個數據點間)。.

方差和正态分布 · 方差和矩 (數學) · 查看更多 »

上面的列表回答下列问题

正态分布和矩 (數學)之间的比较

正态分布有57个关系,而矩 (數學)有6个。由于它们的共同之处3,杰卡德指数为4.76% = 3 / (57 + 6)。

参考

本文介绍正态分布和矩 (數學)之间的关系。要访问该信息提取每篇文章,请访问: