我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

正弦定理和角

快捷方式: 差异相似杰卡德相似系数参考

正弦定理和角之间的区别

正弦定理 vs. 角

正弦定理是三角学中的一个定理。它指出:对于任意\triangle ABC,a、b、c分别为\angle A、\angle B、\angle C的对边,R为\triangle ABC的外接圆半径,则有 \frac. 在几何学中,角(拼音:jiǎo,注音符號:ㄐㄧㄠˇ)是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边,它们的公共端点叫做角的顶点。一般的角會假設在欧几里得平面上,但在非欧几里得几何中也可以定義角,特別是在球面幾何學中的是用大圓的圓弧代替射线。角在几何学和三角学中有着广泛的应用。 几何之父欧几里得曾定义角为在平面中两条不平行的直线的相对斜度。普罗克鲁斯認為角可能是一種特質、一種可量化的量、或是一種關係。認為角是相對一直線的偏差,認為角是二條相交直線之間的空間。欧几里得認為角是一種關係,不過他對直角、銳角或鈍角的定義都是量化的。 平面角的大小定义是以两射线交点为圆心的圆被射线所截的弧长与半径之比,单位包括弧度和度、分、秒等。.

之间正弦定理和角相似

正弦定理和角有(在联盟百科)2共同点: 半径三角学

半径

在一个圆中,从圆心到圆周上任何一点所连成的线段称为这个圆的半径,同时,这个线段的长度(也就是圆心到圆上任意一个点的距离)也被称为半径;在数学裡常以r来表示作为长度的半径。.

半径和正弦定理 · 半径和角 · 查看更多 »

三角学

三角学是數學的一個分支,主要研究三角形,以及三角形中边与角之间的关系。三角学定義了三角函數,可以描述三角形边与角的关系,而且都是周期函数,可以用來描述周期性的現象。三角学在西元前三世紀時開始發展,最早是幾何學的一個分支,廣泛的用在天文量測中,三角学也是測量學的基礎。 三角学的基礎是平面三角学,研究平面上的三角形中边与角之间的关系,分为角的度量、三角函数与反三角函数、诱导公式、和与差的公式、倍角、半角公式、和差化积与积化和差公式、解三角形等内容,可能會是單獨的一個科目或是在预科微积分教授,三角函數在純數學及應用數學中的許多領域中出現,例如傅立葉分析及波函數等,是許多科技領域的基礎。 三角学也包括球面三角學,研究球面上,由大圓的弧所包圍成的球面三角形,位在曲率為正值常數的曲面上,是橢圓幾何的一部份,球面三角學是天文學及航海的基礎,也在测量学、制图学、结晶学、仪器学等方面有广泛的应用。負曲率曲面上的三角学則是雙曲幾何中的一部份。.

三角学和正弦定理 · 三角学和角 · 查看更多 »

上面的列表回答下列问题

正弦定理和角之间的比较

正弦定理有7个关系,而角有81个。由于它们的共同之处2,杰卡德指数为2.27% = 2 / (7 + 81)。

参考

本文介绍正弦定理和角之间的关系。要访问该信息提取每篇文章,请访问: