之间正弦和科学史相似
正弦和科学史有(在联盟百科)4共同点: 三角学,直角三角形,餘弦,数学。
三角学
三角学是數學的一個分支,主要研究三角形,以及三角形中边与角之间的关系。三角学定義了三角函數,可以描述三角形边与角的关系,而且都是周期函数,可以用來描述周期性的現象。三角学在西元前三世紀時開始發展,最早是幾何學的一個分支,廣泛的用在天文量測中,三角学也是測量學的基礎。 三角学的基礎是平面三角学,研究平面上的三角形中边与角之间的关系,分为角的度量、三角函数与反三角函数、诱导公式、和与差的公式、倍角、半角公式、和差化积与积化和差公式、解三角形等内容,可能會是單獨的一個科目或是在预科微积分教授,三角函數在純數學及應用數學中的許多領域中出現,例如傅立葉分析及波函數等,是許多科技領域的基礎。 三角学也包括球面三角學,研究球面上,由大圓的弧所包圍成的球面三角形,位在曲率為正值常數的曲面上,是橢圓幾何的一部份,球面三角學是天文學及航海的基礎,也在测量学、制图学、结晶学、仪器学等方面有广泛的应用。負曲率曲面上的三角学則是雙曲幾何中的一部份。.
直角三角形
有一个角为直角的三角形称为直角三角形。在直角三角形中,直角相邻的两条边称为直角边。直角所对的边称为斜边。直角三角形直角所对的边也叫作「弦」。若兩條直角邊不一樣長,短的那條邊叫作「勾」,長的那條邊叫作「股」。 直角三角形满足畢氏定理(勾股定理),即两直角边边长的平方和等于斜边长的平方。直角三角形各邊和角之間的關係也是三角學的基礎。 直角三角形的外心是斜边中点;其垂心是直角顶点。 若直角三角形的三邊均為整數,稱為畢氏三角形,其邊長稱為勾股數。 埃及將邊長比例為3:4:5的直角三角形称为埃及三角形。.
餘弦
余弦是三角函数的一种。它的定义域是整个实数集,值域是。它是周期函数,其最小正周期为2π。在自变量为2nπ(n为整数)时,该函数有极大值1;在自变量为(2n+1)π时,该函数有极小值-1。余弦函数是偶函数,其图像关于y轴对称。.
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
上面的列表回答下列问题
- 什么正弦和科学史的共同点。
- 什么是正弦和科学史之间的相似性
正弦和科学史之间的比较
正弦有24个关系,而科学史有331个。由于它们的共同之处4,杰卡德指数为1.13% = 4 / (24 + 331)。
参考
本文介绍正弦和科学史之间的关系。要访问该信息提取每篇文章,请访问: