之间正四面體和表面積相似
正四面體和表面積有(在联盟百科)9共同点: 三角形,平面,二面角,四角錐,立方體,棱锥,正十二面體,正二十面體,正八面體。
三角形
三角形,又稱三邊形,是由三条线段顺次首尾相连,或不共線的三點兩兩連接,所组成的一个闭合的平面图形,是最基本和最少邊的多边形。 一般用大写英语字母A、B和C为三角形的顶点标号;用小写英语字母a、b和c表示边;用\alpha、\beta和\gamma給角標號,又或者以\angle ABC這樣的顶点标号表示。.
平面
数学上,一个平面(plane)就是基本的二维对象。直观的讲,它可以视为一个平坦的拥有无穷大面积的纸。多数几何、三角学和制图的基本工作都在二维进行,或者说,在平面上进行。 给定一个平面,可以引入一个直角坐标系以便在平面上用两个数字唯一的标示一个点,这两个数字也就是它的坐标。 在三维x-y-z坐标系中,可以将平面定义为一个方程的集: 其中a, b, c和d是实数,使得a, b, c不全为0。或者,一个平面也可以参数化的表述,作为所有具有u + s v + t w形式的点的集合,其中s和t取遍所有实数,而u, v 和w是给定用于定义平面的向量。 平面由如下组合的任何一个唯一确定.
二面角
二面角指两个半平面所夹的空间部分,而两个半平面所交的直线称为二面角的棱。.
四角錐
四角錐是底面為四邊形的錐體。.
立方體
立方體(Cube),是由6個正方形面組成的正多面體,故又稱正六面體(Hexahedron)、正方體或正立方體。它有12條稜(邊)和8個頂(點),是五個柏拉圖立體之一。 立方體是一種特殊的正四棱柱、長方體、三角偏方面體、菱形多面體、平行六面體,就如同正方形是特殊的矩形、菱形、平行四邊形一様。立方體具有,即考克斯特BC3對稱性,施萊夫利符號,,與正八面體對偶。.
棱锥
在幾何學上,棱锥又稱角錐,是三维多面体的一種,由多边形各个顶点向它所在的平面外一点依次连直线段而构成。多边形称为棱锥的底面。随着底面形状不同,棱锥的稱呼也不相同,依底面多边形而定,例如底面是正方形的棱锥称为方锥,底面为三角形的棱锥称为三棱锥,底面为五边形的棱锥称为五棱锥等等。 从棱锥的定义可以推知,一个以边形为底面的棱锥,一共有+1个顶点,+1个面以及2条边。棱锥的对偶多面体是同样形状的棱锥。例如一个方锥的对偶形是(倒立的)方锥。 棱锥的对称性取决于底面多边形的形状和多边形以外那个顶点的位置。如果底面的多边形是正多边形,而且另外一个顶点在底面上的投影是多边形的中心,那么棱锥和正多边形有相同的对称结构(同构的对称群)。 棱锥和棱柱、棱台、帐塔一样,都是擬柱體中的一类。.
正十二面體
正十二面體是由12個正五邊形所組成的正多面體,它共有20个顶点、30条棱、160条对角线,被施莱夫利符号所表示,与正二十面体互成对偶。它是一种只具有的五角十二面体的特殊形式,五角十二面体的另一种特殊形式是具有的卡塔兰多面体菱形十二面体,它(加上所有其它的五角十二面体)都与正十二面体在拓扑上等价。正十二面體还是截顶五方偏方面體的特例。其四維類比為正一百二十胞體。.
正十二面體和正四面體 · 正十二面體和表面積 ·
正二十面體
正二十面體是一種正多面體,由20個正三角形組成。同時,它也是柏拉圖立體、三角面多面體以及康威多面體。正二十面体是所有五种正多面體面數最多的。 正二十面體有20個面、30個邊和12個頂點,其對偶是正十二面體。它的頂點布局為3.3.3.3.3或35,在施萊夫利符號中可用來表示。.
正二十面體和正四面體 · 正二十面體和表面積 ·
正八面體
正八面體由八個等邊三角形,分別為上、下各四個三角形與一個正方形組成的正方錐體,上下黏合在一起而構成,是五種正多面體的第三種,有6個頂點和12條邊。正八面體也是正三角反棱柱。正八面体是三维的正轴形,施莱夫利符号,。 正八面體每四条棱可以成为一个正方形,共有三个独立的正方形。.
上面的列表回答下列问题
- 什么正四面體和表面積的共同点。
- 什么是正四面體和表面積之间的相似性
正四面體和表面積之间的比较
正四面體有55个关系,而表面積有22个。由于它们的共同之处9,杰卡德指数为11.69% = 9 / (55 + 22)。
参考
本文介绍正四面體和表面積之间的关系。要访问该信息提取每篇文章,请访问: