正五胞体和正圖形
快捷方式: 差异,相似,杰卡德相似系数,参考。
正五胞体和正圖形之间的区别
正五胞体 vs. 正圖形
正五胞体是一种四维凸正多胞体,其展开为五个正四面体。正五胞体的投影的形状可以想象成一个双正三棱锥的两顶点再加一条连线,或者是一个正四面体的四顶点连线至中心,在这里,正五胞体作为正的正四面体面锥出现的。正五胞体有四个交面(等边三角形),十条棱和五个顶点。正五胞体是最简单的四维正多胞体(如同三角形是最简单的多边形)。 正五胞体是四维的正单纯形,这是一系列具有相同性质的多胞形的总称,这一家族的特性在正五胞体上也体现出来了。五胞体是四维最简单的多胞体,任何顶点数、棱数、面数、胞数比它小的多胞体都只能成为退化多胞体(即它们并不真正具有真实的、非零的超体积)。正五胞体的顶点排布是让五个点在四维空间中两两间距离都相等的唯一方案。正五胞体同其它面为正三角形的多胞形一样,具有稳定性,即如果正五胞体10条棱长都确定了,则正五胞体就被唯一确定了。. 在幾何學中,正圖形又稱正多胞形(Regular polytope),即正幾何圖形,是一種對稱性对于可递的幾何體,且具有高度對稱性,對於該幾何體內所有同維度的元素(如:點、線、面)都完全具有相同的性質,並且每一個元素皆為一個正圖形,例如,正方體所有的面的面積及形狀皆相同,且皆為正方形,是一個二維正多胞形、所有邊的長度也相同,所有角的角度及形式也相同,因此正方體是一個正圖形或正多胞形。對於所有元素,或叫j維面(對所有的 0 ≤ j ≤ n,其中n是該幾何體所在的維度) — 胞、面等等 — 也都对于多胞形的对称性可递,也是≤ n维的正圖形。 正图形是正多边形(例如,正方形或者正五边形)和正多面体(例如立方体)的向任意维度的推广类比。正图形极强的对称性使它们拥有极强的审美价值,吸引着数学家和数学爱好者。 一般地,n维正图形被定义为有正和正顶点图。这两个条件已经能充分地保证所有面、所有顶点都是相似的。但要注意的是,这一定义并不适用于。 一个正图形能用形式为的施莱夫利符号代表,其正的面为,顶点图为。.
之间正五胞体和正圖形相似
正五胞体和正圖形有(在联盟百科)4共同点: 单纯形,多边形,四维凸正多胞体,正三角形。
几何学上,单纯形或者n-单纯形是和三角形类似的n维几何体。精确的讲,单纯形是某个n维以上的欧几里得空间中的(n+1)个仿射无关(也就是没有m-1维平面包含m+1个点;这样的点集被称为处于一般位置)的点的集合的凸包。 例如,0-单纯形就是点,1-单纯形就是线段,2-单纯形就是三角形,3-单纯形就是四面体,而4-单纯形是一个五胞体(每种情况都包含内部)。 正单纯形是同时也是正多胞形的单纯形。正n-单纯形可以从正(n − 1)-单纯形通过将一个新顶点用同样的边长连接到所有旧顶点构造。.
单纯形和正五胞体 · 单纯形和正圖形 · 查看更多 »
多邊形是平面的封閉图形、由有限線段(大于2)組成,且首尾連接起來劃出的形狀。.
多边形和正五胞体 · 多边形和正圖形 · 查看更多 »
在数学中,四维凸正多胞体(Convex Regular Polychoron)是指一类既是凸的又是正的的四维多胞体。它们是柏拉图立体(正多面体)(三维)和正多边形(二维)的四维类比。它们最先在19世纪被数学家路德维希·施莱夫利所发现,其中五个与五个柏拉图立体一一对应,另外一个(正二十四胞体)没有好的三维类比。 每个四维凸正多胞体必须有同种的同样大小的凸正多面体胞面面相接构成,并且每个顶点周围必须有相同数量的胞。.
四维凸正多胞体和正五胞体 · 四维凸正多胞体和正圖形 · 查看更多 »
正三角形(等邊三角形)是指一種三個邊均等長的三角形,是銳角三角形的一種,其三個角大小相等、均為60度。.
正三角形和正五胞体 · 正三角形和正圖形 · 查看更多 »
上面的列表回答下列问题
- 什么正五胞体和正圖形的共同点。
- 什么是正五胞体和正圖形之间的相似性
正五胞体和正圖形之间的比较
正五胞体有14个关系,而正圖形有32个。由于它们的共同之处4,杰卡德指数为8.70% = 4 / (14 + 32)。
参考
本文介绍正五胞体和正圖形之间的关系。要访问该信息提取每篇文章,请访问: