之间正三角形和正多边形相似
正三角形和正多边形有(在联盟百科)5共同点: 外接圓,三角形,六边形,正多面體,正方形。
外接圓
在數學中,一個二維平面上的多邊形的外接圓是一個使得該多邊形的所有頂點都在其上的圓形,這時稱這個多邊形為圓內接多邊形,外接圓的圓心被稱為該多邊形的外心。 一個多邊形至多有一個外接圓,也就是說對於一個多邊形,它的外接圓,如果存在的話,是唯一的。並非所有的多邊形都有外接圓。三角形和正多邊形一定有外接圓。擁有外接圓的四邊形被稱為圓內接四邊形。.
三角形
三角形,又稱三邊形,是由三条线段顺次首尾相连,或不共線的三點兩兩連接,所组成的一个闭合的平面图形,是最基本和最少邊的多边形。 一般用大写英语字母A、B和C为三角形的顶点标号;用小写英语字母a、b和c表示边;用\alpha、\beta和\gamma給角標號,又或者以\angle ABC這樣的顶点标号表示。.
六边形
在幾何學中,六邊形是指有六條邊和六個頂點的多邊形,其內角和為720度。六邊形有很多種,其中對稱性最高的是正六邊形。正六邊形是一種可以使用尺規作圖的六邊形,也可以拼滿平面,因此自然界中可以找到許多正六邊形的結構,如蜂巢、玄武岩和苯的分子結構。另外,正六邊形也可以構成一些高對稱性的多面體,如截角二十面體,巴克明斯特富勒烯的分子結構就是這種形狀。 六邊形依照其類角的性質可以分成凸六邊形和非凸六邊形,其中凸六邊形代表所有內角的角度皆小於180度。非凸六邊形可以在近一步分成凹六邊形和星形六邊形,其中星形六邊形表示邊自我相交的六邊形。.
正多面體
正多面體,或稱柏拉圖立體, 指各面都是全等的正多邊形且每一個頂點所接的面數都是一樣的凸多面體。 正多面體的別稱柏拉圖立體是因柏拉圖而命名的。柏拉圖的朋友泰阿泰德告訴柏拉圖這些立體,柏拉圖便將這些立體寫在《蒂邁歐篇》(Timaeus) 內。正多面體的作法收錄《几何原本》的第13卷。在命題13描述正四面體的作法;命題14為正八面體作法;命題15為立方體作法;命題16則是正二十面體作法;命題17則是正十二面體作法。.
正方形
在平面几何学中,正方形是四邊相等且四個角是直角的四邊形。正方形是正多边形的一种:正四边形。四个顶点为ABCD的正方形可以记为。 正方形是二维的超方形,也是二维的正轴形。.
上面的列表回答下列问题
- 什么正三角形和正多边形的共同点。
- 什么是正三角形和正多边形之间的相似性
正三角形和正多边形之间的比较
正三角形有24个关系,而正多边形有39个。由于它们的共同之处5,杰卡德指数为7.94% = 5 / (24 + 39)。
参考
本文介绍正三角形和正多边形之间的关系。要访问该信息提取每篇文章,请访问: