我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

歐拉-馬斯刻若尼常數和辛钦常数

快捷方式: 差异相似杰卡德相似系数参考

歐拉-馬斯刻若尼常數和辛钦常数之间的区别

歐拉-馬斯刻若尼常數 vs. 辛钦常数

歐拉-馬斯刻若尼常數是一个数学常数,定义为调和级数与自然对数的差值: \sum_^n \frac \right) - \ln(n) \right. 在數論領域中,苏联數學家亚历山大·雅科夫列维奇·辛钦(Aleksandr Yakovlevich Khinchin)證明對於幾乎所有實數x,其連分數表示式的係數ai的幾何平均數之極限存在,且與x數值無關,此數值稱為辛钦常數(Khinchin's constant)。 以下是x的連分數表示式 針對任意實數x,以下的等式幾乎總是為真 K_0 其中 K_0為辛钦常數 \prod_^\infty ^ \approx 2.6854520010\dots.

之间歐拉-馬斯刻若尼常數和辛钦常数相似

歐拉-馬斯刻若尼常數和辛钦常数有(在联盟百科)4共同点: 连分数自然對數有理数数论

连分数

在数学中,连分数或繁分数即如下表达式: 这里的a_0是某个整数,而所有其他的数a_n都是正整数,可依樣定义出更长的表达式。如果部分分子(partial numerator)和部分分母(partial denominator)允许假定任意的值,在某些上下文中可以包含函数,则最終的表达式是广义连分数。在需要把上述标准形式與广义连分数相區別的时候,可稱它為简单或正规连分数,或称为是规范形式的。.

歐拉-馬斯刻若尼常數和连分数 · 辛钦常数和连分数 · 查看更多 »

自然對數

自然对数(Natural logarithm)是以e為底數的对数函数,標記作ln(x)或loge(x),其反函数是指數函數ex。.

歐拉-馬斯刻若尼常數和自然對數 · 自然對數和辛钦常数 · 查看更多 »

有理数

数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.

有理数和歐拉-馬斯刻若尼常數 · 有理数和辛钦常数 · 查看更多 »

数论

數論是纯粹数学的分支之一,主要研究整数的性質。被譽為「最純」的數學領域。 正整数按乘法性质划分,可以分成質数,合数,1,質数產生了很多一般人也能理解而又懸而未解的問題,如哥德巴赫猜想,孿生質數猜想等,即。很多問題虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。數論除了研究整數及質數外,也研究一些由整數衍生的數(如有理數)或是一些廣義的整數(如代數整數)。 整数可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關係,並且用有理數來逼近實數(丟番圖逼近)。 數論早期稱為算術。到20世紀初,才開始使用數論的名稱,而算術一詞則表示「基本運算」,不過在20世紀的後半,有部份數學家仍會用「算術」一詞來表示數論。1952年時數學家Harold Davenport仍用「高等算術」一詞來表示數論,戈弗雷·哈羅德·哈代和愛德華·梅特蘭·賴特在1938年寫《數論介紹》簡介時曾提到「我們曾考慮過將書名改為《算術介紹》,某方面而言是更合適的書名,但也容易讓讀者誤會其中的內容」。 卡尔·弗里德里希·高斯曾說:「數學是科學的皇后,數論是數學的皇后。.

数论和歐拉-馬斯刻若尼常數 · 数论和辛钦常数 · 查看更多 »

上面的列表回答下列问题

歐拉-馬斯刻若尼常數和辛钦常数之间的比较

歐拉-馬斯刻若尼常數有14个关系,而辛钦常数有16个。由于它们的共同之处4,杰卡德指数为13.33% = 4 / (14 + 16)。

参考

本文介绍歐拉-馬斯刻若尼常數和辛钦常数之间的关系。要访问该信息提取每篇文章,请访问: