我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

模型论和论域

快捷方式: 差异相似杰卡德相似系数参考

模型论和论域之间的区别

模型论 vs. 论域

数学上,模型论(Model theory)是从集合论的论述角度对数学概念表现(representation)的研究,或者说是对于作为数学系统基础的“模型”的研究。粗略地说,该学科假定有一些既存的数学“对象”,然后研究:当这些对象之间的一些运算或者一些关系乃至一组公理被给定时,可以相应证明出什么,以及如何证明。 比如实数理论中一个模型论概念的例子是:我们从一个任意集合开始,作为集合元素的每个个体都是一个实数,其间有一些关系和(或)函数,例如。若我们在该语言中问"∃ y (y × y. 在形式科學裡,論域(或稱做論述全集),是指在某些系統化的論述裡的一些令人感興趣的變數之上,由其中的實體所組成的集合。論域通常被視為預備知識,所以不需要每一次都指出相關變數的範圍來。 例如,在一階邏輯的解釋中,論域是指由量詞能指涉到的個體所組成的集合。在一個解釋裡,論域可以是實數的集合;在另一個解釋裡,則可能是自然數的集合。若沒有指定任何論域,則如∀x (x2 ≠ 2) 之類命題的真偽是不確定的。若論域是實數的集合,此命題即是假的,因為有x.

之间模型论和论域相似

模型论和论域有(在联盟百科)3共同点: 实数一阶逻辑全集

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

实数和模型论 · 实数和论域 · 查看更多 »

一阶逻辑

一阶逻辑是使用於数学、哲学、语言学及電腦科學中的一种形式系统。 過去一百多年,一階邏輯出現過許多種名稱,包括:一阶斷言演算、低階斷言演算、量化理論或斷言逻辑(一個較不精確的用詞)。一階邏輯和命題邏輯的不同之處在於,一階邏輯有使用量化變數。一個一階邏輯,若具有由一系列量化變數、一個以上有意義的斷言字母及包含了有意義的斷言字母的純公理所組成的特定論域,即是一個一階理論。 一階邏輯和其他高階邏輯不同之處在於,高階邏輯的斷言可以有斷言或函數當做引數,且允許斷言量詞或函數量詞的(同時或不同時)存在。在一階邏輯中,斷言通常和集合相關連。在有意義的高階邏輯中,斷言則會被解釋為集合的集合。 存在許多對一階邏輯是可靠(所有可證的敘述皆為真)且完備(所有為真的敘述皆可證)的演繹系統。雖然一階邏輯的邏輯歸結只是半可判定性的,但還是有許多用於一階邏輯上的自動定理證明。一階邏輯也符合一些使其能通過證明論分析的元邏輯定理,如勒文海姆–斯科倫定理及緊緻性定理。 一階邏輯是數學基礎中很重要的一部份,因為它是公理系統的標準形式邏輯。許多常見的公理系統,如一階皮亞諾公理和包含策梅洛-弗蘭克爾集合論的公理化集合論等,都可以形式化成一階理論。然而,一階定理並沒有能力去完整描述及範疇性地建構如自然數或實數之類無限的概念。這些結構的公理系統可以由如二階邏輯之類更強的邏輯來取得。.

一阶逻辑和模型论 · 一阶逻辑和论域 · 查看更多 »

全集

数学上,特别是在集合论和数学基础的应用中,全类(若是集合,则为全集)大约是这样一个类,它(在某种程度上)包含了所有的研究对象和集合。.

全集和模型论 · 全集和论域 · 查看更多 »

上面的列表回答下列问题

模型论和论域之间的比较

模型论有39个关系,而论域有13个。由于它们的共同之处3,杰卡德指数为5.77% = 3 / (39 + 13)。

参考

本文介绍模型论和论域之间的关系。要访问该信息提取每篇文章,请访问: