我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

椭球和轉動慣量

快捷方式: 差异相似杰卡德相似系数参考

椭球和轉動慣量之间的区别

椭球 vs. 轉動慣量

椭球是一种二次曲面,是椭圆在三维空间的推广。椭球在xyz-笛卡儿坐标系中的方程是: 其中a和b是赤道半径(沿着x和y轴),c是极半径(沿着z轴)。这三个数都是固定的正实数,决定了椭球的形状。 如果三个半径都是相等的,那么就是一个球;如果有两个半径是相等的,则是一个类球面。. 在经典力學中,轉動慣量又稱慣性矩(Moment of inertia),通常以I表示,國際單位制為·。轉動慣量是一個物體對於其旋轉運動的慣性大小的量度。一個剛體對於某轉軸的轉動慣量決定了對於這物體繞著這轉軸進行某種角加速度運動所需要施加的力矩。轉動慣量在转动動力學中的角色相當於線性動力學中的質量,描述角動量、角速度、力矩和角加速度等數個量之間的關係。.

之间椭球和轉動慣量相似

椭球和轉動慣量有(在联盟百科)4共同点: 实数质量正交旋转

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

实数和椭球 · 实数和轉動慣量 · 查看更多 »

质量

在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.

椭球和质量 · 质量和轉動慣量 · 查看更多 »

正交

正交是线性代数的概念,是垂直這一直觀概念的推廣。作為一個形容詞,只有在一個確定的內積空間中才有意義。若內積空間中兩向量的內積為0,則稱它們是正交的。如果能夠定義向量間的夾角,則正交可以直觀的理解為垂直。物理中:運動的獨立性,也可以用正交來解釋。.

椭球和正交 · 正交和轉動慣量 · 查看更多 »

旋转

旋转在几何和线性代数中是描述刚体围绕一个固定点的运动的在平面或空间中的变换。旋转不同于没有固定点的平移,和翻转变换的形体的反射。旋转和上面提及的变换是等距的,它们保留在任何两点之间的距离在变换之后不变。.

旋转和椭球 · 旋转和轉動慣量 · 查看更多 »

上面的列表回答下列问题

椭球和轉動慣量之间的比较

椭球有32个关系,而轉動慣量有28个。由于它们的共同之处4,杰卡德指数为6.67% = 4 / (32 + 28)。

参考

本文介绍椭球和轉動慣量之间的关系。要访问该信息提取每篇文章,请访问: