我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

核子和重子

快捷方式: 差异相似杰卡德相似系数参考

核子和重子之间的区别

核子 vs. 重子

在化學和物理學裏,核子(nucleon)是組成原子核的粒子。每個原子核都擁有至少一個核子,每個原子又是由原子核與圍繞原子核的一個或多個電子所組成。核子共有兩種:中子和質子。任意原子同位素的質量數就是其核子的總數。因此有時人們也會稱這個數字為「核子數」。 在1960年代之前,核子被認為是基本粒子,不是由更小的部份組成的。今天我們知道核子是複合粒子,由三個夸克經強相互作用綑綁在一起組成。兩個或多個核子之間的交互作用稱為核力,最終這也是強交互作用引起的。(在發現夸克之前,「強交互作用」一詞只用於核子間的交互作用。) 核子研究屬於粒子物理學和核物理學的交叉領域。粒子物理學,特別是量子色動力學,提供了解釋夸克及強交互作用屬性的公式。這些公式用定量方法解釋夸克是如何結合成為中子和質子(以及所有其他的強子)。然而,當多個核子組合為一個原子核(核素)時,這些基礎方程式變得非常難直接求解,必須使用核物理學的方法。核物理學利用近似法和模型來研究多個核子之間的交互作用,例如用核殼層模型。這些模型能夠準確解釋核素的屬性,比如哪些核素會進行核衰變等。 質子和中子都是重子和費米子。質子和中子特別相似,除了中子不帶有電荷以外,中子的質量比質子僅僅高0.1%,它們的質量非常相近,因此它們可以視為同樣核子的兩種狀態,共同組成了一個同位旋二重態(),在抽象的同位旋空間做旋轉變換,就可以從中子變換為質子,或從質子變換為中子。這兩個幾乎相同的核子都感受到相等的強相互作用,這意味著強相互作用對於同位旋空間旋轉變換具有不變性。按照諾特定理,對於強相互作用,同位旋守恆。. 重子(Baryon)是一個現代粒子物理學名詞,在標準模型理論中,「重子」這一名詞是指由三个夸克(或者三个反夸克组成的「反重子」)组成的複合粒子。在這理論中它是強子的一類。值得注意的是,因為重子屬於複合粒子,所以「不是」基本粒子。最常见的重子有組成日常物質原子核的质子和中子,合称为核子。其它重子中,有比这两種粒子更重的粒子,所谓的超子。重子这个称呼是指其质量相对重于轻子和介于两者之间的介子起的。 重子是强相互作用的费米子,也就是说它们遵守费米-狄拉克统计和泡利不相容原理,它们通过组成它们的夸克参加强相互作用。同时它们也参加弱相互作用和引力。带电荷的重子也参加电磁力作用。 重子与由一个夸克和一个反夸克组成的介子一起被合称为强子。强子是所有强相互作用的粒子的总称。 质子是唯一独立稳定的重子。中子假如不与其它中子或者质子一起组成原子核的话就不會稳定,並產生衰变。.

之间核子和重子相似

核子和重子有(在联盟百科)17共同点: 基本粒子原子核夸克中子强子强相互作用粒子物理學电子質子费米子超子電子伏特Ξ粒子Σ粒子Δ粒子Λ粒子泡利不相容原理

基本粒子

在粒子物理学中,基本粒子是组成物质最基本的单位。其内部结构未知,所以也无法确认是否由其它更基本的粒子所组成 。随著物理学的不断发展,人类对物质构成的认知逐渐深入,因此基本粒子的定义随时间也有所变化。目前在标準模型理论的架构下,已知的基本粒子可以分为费米子(包含夸克和轻子)以及玻色子(包含规范玻色子和希格斯粒子)。由两个或更多基本粒子所组成的则称作复合粒子。 我们日常生活中的物质由原子所组成。过去原子被认為是基本粒子,原子(atom)这个词来自希腊语中「不可切分的」。直到约1910年以前,原子的存在与否仍存在争议,一些物理学家认為物质是由能量所组成,而分子不过是数学上的一种猜想。之后,原子核被发现是由质子和中子所构成。20世纪前、中期的基本粒子是指质子、中子、电子、光子和各种介子,这是当时人类所能探测的最小粒子。随著实验和量子场论的进展,发现质子、中子、介子发现是由更基本的夸克和胶子所组成。同时人类也陆续发现了性质和电子类似的一系列轻子,还有性质和光子、胶子类似的一系列规范玻色子。这些是现代的物理学所理解的基本粒子。.

基本粒子和核子 · 基本粒子和重子 · 查看更多 »

原子核

原子核(德语:Atomkern,英语:Atomic nucleus)是原子的组成部分,位于原子的中央,占有原子的大部分质量。組成原子核的有中子和質子。当周围有和其中质子等量的电子围绕时,构成的是原子。原子核極其渺小,如果将原子比作一座大廈,那麼原子核只有大廈裡的一張桌子那麼大。.

原子核和核子 · 原子核和重子 · 查看更多 »

夸克

夸克(quark,又譯“层子”或「虧子」)是一種基本粒子,也是構成物質的基本單元。夸克互相結合,形成一種複合粒子,叫強子,強子中最穩定的是質子和中子,它們是構成原子核的單元。由於一種叫“夸克禁閉”的現象,夸克不能夠直接被觀測到,或是被分離出來;只能夠在強子裏面找到夸克 。因為這個原因,人類對夸克的所知大都是來自對強子的觀測。 夸克有六種“味”,分別是上、下、-zh-tw:魅;zh-cn:粲-、奇、底及頂 。上及下夸克的質量是所有夸克中最低的。較重的夸克會通過一個叫粒子衰變的過程,來迅速地變成上或下夸克。粒子衰變是一個從高質量態變成低質量態的過程。就是因為這個原因,上及下夸克一般來說很穩定,所以它們在宇宙中很常見,而奇、--、頂及底則只能經由高能粒子的碰撞產生(例如宇宙射線及粒子加速器)。 夸克有着多種不同的內在特性,包括電荷、色荷、自旋及質量等。在標準模型中,夸克是唯一一種能經受全部四種基本相互作用的基本粒子,基本相互作用有時會被稱為“基本力”(電磁相互作用力、萬有引力、強相互作用力及弱相互作用力)。夸克同時是現時已知唯一一種基本電荷非整數的粒子。夸克每一種味都有一種對應的反粒子,叫反夸克,它跟夸克的不同之處,只在於它的一些特性跟夸克大小一樣但正負不同。 夸克模型分別由默里·蓋爾曼與喬治·茨威格於1964年獨立地提出 。引入夸克這一概念,是為了能更好地整理各種強子,而當時並沒有甚麼能證實夸克存在的物理證據,直到1968年SLAC開發出實驗為止 。夸克的六種味已經全部被加速器實驗所觀測到;而於1995年在費米實驗室被觀測到的頂夸克,是最後發現的一種。.

夸克和核子 · 夸克和重子 · 查看更多 »

中子

| magnetic_moment.

中子和核子 · 中子和重子 · 查看更多 »

强子

在粒子物理學裏,强子(hadron)是一种由夸克或反夸克通過強作用力綑綁在一起的複合粒子。强子主要分为以下兩大類:.

强子和核子 · 强子和重子 · 查看更多 »

强相互作用

强相互作用是作用于强子之间的力,是所知四种宇宙间基本作用力最强的,也是作用距离第二短的(大约在 10-15 m 范围内,比弱交互作用的範圍大)。另外三种相互作用分别是引力、电磁力及弱相互作用。核子间的核力就是强相互作用。它抵抗了质子之间的强大的电磁力,维持了原子核的稳定。强相互作用也將夸克基本粒子結合成為質子及中子等強子,這也是組成大部份物質的粒子。而且一般質子或中子裡,大部份的質能是以强相互作用場能量的形式存在,夸克只提供了1%的質能。 强相互作用可以在二個地方看到:較大的尺度(約1至3飛米)下,强相互作用將質子及中子結合成為原子的原子核,較小的尺度(約0.8飛米,約為核子的尺寸)下,强相互作用將夸克結合,成為質子、中子或其他強子。强相互作用的作用力非常強,大到束縛一個夸克的能量可以轉換為新的夸克對的質量,强相互作用的這個性質稱為夸克禁閉。 强相互作用是唯一強度不會隨距離減小的作用力,但因為夸克禁閉,夸克會限制和其他夸克在一起,形成的強子之間會有殘留的强相互作用,也稱為核力,核力會隨距離而迅速減少。撞擊原子核釋放的部份束縛能和產生的核力有關,而核力也用在核能及核融合式的核武器中。 强相互作用一般認為是由膠子傳遞的,膠子會在夸克、反夸克及其他膠子之間交換。膠子會帶有色荷,色荷和人眼可見的顏色完全沒有關係,色荷類似電荷,但色荷有六種(紅、綠、藍、反紅、反綠、反藍),因此會形成不同的力,有不同的規則,在量子色動力學(QCD)中有描述,這也是夸克-膠子交互作用的基礎。吳秀蘭等科學家對膠子發現有很大貢獻的科學家,在1995年因此获得了欧洲物理学会髙能和粒子物理奖。 在大爆炸後,電弱時期時,電弱交互作用和强相互作用分離,統一弱交互作用和電磁交互作用的電弱統一理論已經獲得實驗證實。科學家進一步預期有一個大統一理論可以統一電弱交互作用及强相互作用,現今有許多是大統一理論的理論,第一個是哈沃德·乔吉和谢尔登·格拉肖于1974年提出了最早的SU(5)大统一理论,但和實驗不合,其他的理論有SO(10)模型、,但還沒有一個是廣為科學家接受,且有實驗證實的理論,而且許多大統一理論都預言質子衰變,但目前也還沒有實驗支持,大統一理論也還是未解決的物理學問題之一。.

强相互作用和核子 · 强相互作用和重子 · 查看更多 »

粒子物理學

粒子物理学是研究组成物质和射线的基本粒子以及它们之间相互作用的一個物理学分支。由于许多基本粒子在大自然的一般条件下不存在或不单独出现,物理学家只有使用粒子加速器在高能相撞的条件下才能生产和研究它们,因此粒子物理学也被称为高能物理学。.

核子和粒子物理學 · 粒子物理學和重子 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

核子和电子 · 电子和重子 · 查看更多 »

質子

|magnetic_moment.

核子和質子 · 質子和重子 · 查看更多 »

费米子

在粒子物理學裏,费米子(fermion)是遵守费米-狄拉克统计的粒子。費米子包括所有夸克與輕子,任何由奇數個夸克或輕子組成的複合粒子,所有重子與很多種原子與原子核都是費米子。術語費米子是由保羅·狄拉克給出,紀念恩里科·費米在這領域所作的傑出貢獻。 費米子可以是基本粒子,例如電子,或者是複合粒子,例如質子、中子。根據相對論性量子場論的自旋統計定理,自旋為整數的粒子是玻色子,自旋為半整數的粒子是費米子。除了這自旋性質以外,費米子的重子數與輕子數守恆。因此,時常被引述的「自旋統計關係」實際是一種「自旋統計量子數關係」。 根據費米-狄拉克統計,對於N個全同費米子,假設將其中任意兩個費米子交換,則由於描述這量子系統的波函數具有反對稱性,波函數的正負號會改變。由於這特性,費米子遵守包利不相容原理:兩個全同費米子不能占有同樣的量子態。因此,物質具有有限體積與硬度。費米子被稱為物質的組成成分。質子、中子、電子是製成日常物質的關鍵元素。.

核子和费米子 · 费米子和重子 · 查看更多 »

超子

超子是含有上夸克、下夸克、奇夸克,並且至少含有一個奇夸克的重子。超子的自旋是半奇數,而且都遵守費米-狄拉克統計,是費米子。它們都是通過強核力彼此之間相互作用,是一種強子。當超子弱衰變時宇稱不守恆。 最早關於超子的研究是開始於1950年代。這促成物理學者給出井然有序的粒子分類。當今,歐洲核子研究組織、費米國立加速器實驗室、史丹佛線性加速器中心、布魯克哈芬國家實驗室等都有在研究关於超子的論題,這包括CP破壞、自旋測量、激發態研究(一般指為光譜學)、尋找像五夸克或雙重子一類的奇特態。 超子的例子有:Δ、Λ、Σ、Ξ和Ω,他們鲜为人知,一般比核子重,而且寿命非常短。.

核子和超子 · 超子和重子 · 查看更多 »

電子伏特

電子伏特(electron Volt),簡稱電子伏,符号为eV,是能量的單位。代表一個電子(所帶電量為1.6×10-19庫侖)经过1伏特的電位差加速后所獲得的动能。電子伏与SI制的能量单位焦耳(J)的换算关系是.

核子和電子伏特 · 重子和電子伏特 · 查看更多 »

Ξ粒子

在粒子物理学中,Ξ粒子是一类由一个较轻的第一代夸克和两个较重的夸克(可以是第二代夸克或第三代夸克)组成的重子。这类粒子因其不稳定性也被称作“级联粒子”(cascade particles)——它们能在极短的时间内通过一系列的衰变转化为较轻的稳定粒子。第一个Ξ粒子于1964年于美国布克海文国家实验室被发现。 2007年12月,美国费米实验室公布了在D0实验中粒子费米实验室碰撞探测器(CDF)被发现。该粒子也被称作级联B粒子(cascade B),它是第一个被发现的、由三个不同代的夸克(一个下夸克、一个奇夸克及一个底夸克)组成的次原子粒子。关于的粒子质量,D0合作组与CDF合作组公布的数据有所出入,分别为和。粒子数据组(PDG)中提供的数据为平均值。 除有特別註明,Ξ粒子中非上/下夸克的夸克為粲夸克,所以 由上夸克、粲夸克、底夸克組成,而 由一粒上夸克和兩粒底夸克組成。.

Ξ粒子和核子 · Ξ粒子和重子 · 查看更多 »

Σ粒子

在粒子物理中,Σ粒子一类由三个夸克组成的重子。两个上夸克(或两个下夸克)和一个奇夸克组成;两个上夸克(或两个下夸克)和一个粲夸克组成;两个上夸克(或两个下夸克)和一个底夸克组成。.

Σ粒子和核子 · Σ粒子和重子 · 查看更多 »

Δ粒子

Δ粒子,一种重子,仅由上夸克与下夸克组成。质量为1,232 MeV/c2。自旋与同位旋为3/2。.

Δ粒子和核子 · Δ粒子和重子 · 查看更多 »

Λ粒子

在粒子物理中,Λ粒子是一类由三个夸克组成的重子。一个上夸克、一个下夸克和一个奇夸克组成;一个上夸克、一个下夸克和一个粲夸克组成;一个上夸克、一个下夸克和一个底夸克组成。于1947年的一次宇宙射线相互作用中首先被发现。该粒子理论寿命为约10−23 s,但它实际存留了约10−10 s。使它存留了如此长时间的未知属性后来被称为奇异性,Λ粒子的“奇异性”(strangeness)也导致了奇夸克的发现和奇异性守恒定律这一理论的创造。该理论指出,如果某些质量较小的粒子表现出“奇异性”,它们的半衰期便会较长(因为在重子的衰变非弱相互作用力衰变过程中奇异性必须守恒)。.

Λ粒子和核子 · Λ粒子和重子 · 查看更多 »

泡利不相容原理

在量子力学裏,泡利不--容原理(Pauli exclusion principle)表明,兩個全同的費米子不能處於相同的量子態。這原理是由沃尔夫冈·泡利於1925年通过分析实验結果得到的結論。例如,由於電子是費米子,在一個原子裏,每個電子都擁有獨特的一組量子數n,\ell,m_\ell,m_s,兩個電子各自擁有的一組量子數不能完全相同,假若它們的主量子數n,角量子數\ell,磁量子數m_\ell分別相同,則自旋磁量子數m_s必定不同,它們必定擁有相反的自旋磁量子數。換句話說,處於同一原子軌域的兩個電子必定擁有相反的自旋方向。泡利不--容原理簡稱為泡利原理或不相容原理。 全同粒子是不可区分的粒子,按照自旋分為費米子、玻色子兩種。費米子的自旋為半整數,它的波函數對於粒子交換具有反對稱性,因此它遵守泡利不相容原理,必须用費米–狄拉克統計來描述它的統計行為。費米子包括像夸克、電子、中微子等等基本粒子。 玻色子的自旋為整數,它的波函數對於粒子交換具有對稱性,因此它不遵守泡利不相容原理,它的統計行為只符合玻色-愛因斯坦統計。任意數量的全同玻色子都可以處於同樣量子態。例如,激光產生的光子、玻色-愛因斯坦凝聚等等。 泡利不相容原理是原子物理學與分子物理學的基礎理論,它促成了化學的變幻多端、奧妙無窮。2013年,義大利的格蘭沙索國家實驗室(Laboratori Nazionali del Gran Sasso)團隊發佈實驗結果,違反泡利不相容原理的概率上限被設定為4.7×10-29。.

核子和泡利不相容原理 · 泡利不相容原理和重子 · 查看更多 »

上面的列表回答下列问题

核子和重子之间的比较

核子有65个关系,而重子有46个。由于它们的共同之处17,杰卡德指数为15.32% = 17 / (65 + 46)。

参考

本文介绍核子和重子之间的关系。要访问该信息提取每篇文章,请访问: