我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

核動力和熔盐堆

快捷方式: 差异相似杰卡德相似系数参考

核動力和熔盐堆之间的区别

核動力 vs. 熔盐堆

核动力(nuclear power,也稱原子能或核能)是利用可控核反应来获取能量,然后产生动力、热量和电能。该术语包括核裂变,核衰变和核聚变。产生核电的工厂被称作核电站,将核能转化为电能的装置包括反应堆和汽轮发电机。核能在反应堆中被转化为热能,热能将水变为蒸汽推动汽轮发电机组发电。 利用核反应来获取能量的原理是:当裂变材料(例如铀-235)在受人为控制的条件下发生核裂变时,核能就会以热的形式被释放出来,这些热量会被用来驱动蒸汽机。蒸汽机可以直接提供动力,也可以连接发电机来产生电能。世界各国军队中的某些潜艇及航空母舰以核能为动力(主要是美國)。 根據國際能源署的資料,2007年全球電力有13.8%由核能提供。截至2014年9月,全世界共有437个核电机组处于运行状态,总装机容量为374.5吉瓦,虽然不是所有的核反应堆都正在发电。超过150艘使用核动力推进的舰船已被建造,由超过180个核反应堆提供提供动力。 核动力相關的重大事故包括三哩岛核泄漏事故(1979年)、切尔诺贝利核事故(1986年)、福岛第一核电站事故(2011年)和一些核动力潜艇事故。在各種能源的事故之中,按照每个单位发电的人命损失计算,核电的安全记录優于其他几种主要的发电方式。 If you cannot access the paper via the above link, the following link is open to the public, credit to the authors. 反應爐(molten salt reactor, MSR)是核裂变反應爐的一种,屬於第四代反應爐,其主以至燃料本身都是熔盐混合物,它可以在高温下工作(可获得更高的热效率)时保持低蒸氣壓,从而降低机械应力,提高安全性,并且比熔融纳冷却剂活性低。 核燃料既可以是固体燃料棒,也可以溶于主冷却剂中,从而无需制造燃料棒,简化反應爐结构,使燃耗均匀化,并允许在线燃料后处理。在许多设计方案中核燃料,如 四氟化铀(UF4),溶于熔融的氟化物盐。爐芯用做慢化剂,熔盐流体在其中达到临界。许多现代设计方案采用陶瓷燃料在石墨基质中均匀分布,熔盐提供低压高温冷却的形式。熔盐更有效地将热量带出爐芯,减少对泵、管道的需求,并因此而的缩小爐芯的尺寸。 在20世纪50年代這是新構想然而後續種種時代原因被美蘇兩國放棄,其他國家又缺乏預算和技術研發,導致停頓,但随着新材料工程的出现與時代要求變遷,这一技术重新受到了关注。 美國早期的“(1954)”的主要动因在于熔盐反應爐尺寸小,而“(1965-69)”是增殖反應爐核电站的样机,但最後都沒有再持續發展。.

之间核動力和熔盐堆相似

核動力和熔盐堆有(在联盟百科)7共同点: 中子减速剂快中子增殖反应堆瓦特核動力核电站核燃料

中子减速剂

中子减速剂(Neutron moderator,又称中子慢化剂)在一般情况下,可裂变核发射出的中子的飞行速度比可被裂变核捕获的中子速度要快,因此为了产生链式反应,就必须要将中子的飞行速度降下来,这时就会使用中子减速剂。 石墨中的碳元素,以及水中的氢元素都能起到慢化作用。因此通常用于热中子反应堆慢化剂的有三种材料.

中子减速剂和核動力 · 中子减速剂和熔盐堆 · 查看更多 »

快中子增殖反应堆

快中子增殖反應堆(Fast breeder reactor),或稱快中子滋生反應堆、快滋生反應堆、快堆等,是一種核子反應器,核燃料和一顆快中子在核分裂後產生更多的中子,且利用增殖性材料吸收快中子後形成可裂变物质,產生的燃料多於消耗的燃料。另外也有利用熱中子進行滋生反應的「熱滋生反應器」。.

快中子增殖反应堆和核動力 · 快中子增殖反应堆和熔盐堆 · 查看更多 »

瓦特

特(符号:W)是国际单位制的功率单位。瓦特的定义是1焦耳/秒(1 J/s),即每秒钟转换,使用或耗散的(以安培为量度的)能量的速率。日常生活中更常用千瓦作为单位,1千.

核動力和瓦特 · 熔盐堆和瓦特 · 查看更多 »

核動力

核动力(nuclear power,也稱原子能或核能)是利用可控核反应来获取能量,然后产生动力、热量和电能。该术语包括核裂变,核衰变和核聚变。产生核电的工厂被称作核电站,将核能转化为电能的装置包括反应堆和汽轮发电机。核能在反应堆中被转化为热能,热能将水变为蒸汽推动汽轮发电机组发电。 利用核反应来获取能量的原理是:当裂变材料(例如铀-235)在受人为控制的条件下发生核裂变时,核能就会以热的形式被释放出来,这些热量会被用来驱动蒸汽机。蒸汽机可以直接提供动力,也可以连接发电机来产生电能。世界各国军队中的某些潜艇及航空母舰以核能为动力(主要是美國)。 根據國際能源署的資料,2007年全球電力有13.8%由核能提供。截至2014年9月,全世界共有437个核电机组处于运行状态,总装机容量为374.5吉瓦,虽然不是所有的核反应堆都正在发电。超过150艘使用核动力推进的舰船已被建造,由超过180个核反应堆提供提供动力。 核动力相關的重大事故包括三哩岛核泄漏事故(1979年)、切尔诺贝利核事故(1986年)、福岛第一核电站事故(2011年)和一些核动力潜艇事故。在各種能源的事故之中,按照每个单位发电的人命损失计算,核电的安全记录優于其他几种主要的发电方式。 If you cannot access the paper via the above link, the following link is open to the public, credit to the authors.

核動力和核動力 · 核動力和熔盐堆 · 查看更多 »

核电站

#重定向 核电厂.

核動力和核电站 · 核电站和熔盐堆 · 查看更多 »

核燃料

核燃料(nuclear fuel)是指可被核反应堆利用,通过核裂变或核聚变产生实用核能的材料。核燃料既能指燃料本身,也能代指由燃料材料、结构材料和中子减速剂及中子反射材料等组成的燃料棒。 核燃料具有在所有实际燃料来源中最高的能量密度。.

核動力和核燃料 · 核燃料和熔盐堆 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

核動力和氢 · 氢和熔盐堆 · 查看更多 »

上面的列表回答下列问题

核動力和熔盐堆之间的比较

核動力有208个关系,而熔盐堆有20个。由于它们的共同之处7,杰卡德指数为3.07% = 7 / (208 + 20)。

参考

本文介绍核動力和熔盐堆之间的关系。要访问该信息提取每篇文章,请访问: