我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

核 (线性算子)和零空间

快捷方式: 差异相似杰卡德相似系数参考

核 (线性算子)和零空间之间的区别

核 (线性算子) vs. 零空间

在线性代数与泛函分析中,一个线性算子 L 的核(kernel)是所有使 L(v). 在数学中,一个算子 A 的零空间是方程 Av.

之间核 (线性算子)和零空间相似

核 (线性算子)和零空间有(在联盟百科)6共同点: 向量空间矩阵秩-零化度定理线性子空间线性映射正交补

向量空间

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.

向量空间和核 (线性算子) · 向量空间和零空间 · 查看更多 »

矩阵

數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

核 (线性算子)和矩阵 · 矩阵和零空间 · 查看更多 »

秩-零化度定理

秩-零化度定理是线性代数中的一个定理,给出了一个线性变换或一个矩阵的秩和它的零化度之间的关系。对一个元素在域\mathrm中的m \cdot n矩阵\mathrm,秩-零化度定理说明,它的秩(rank A)和零化度(nullity A)之和等于n: 同样的,对于一个从F-线性空间\mathrm射到\mathrm-线性空间\mathrm的线性变换 \mathrm \;: \; \; \mathrm \rightarrow \mathrm , \mathrm的秩是它的象的维度,\mathrm的零化度是它的核(零空间)的维度。我们有: 实际上定理在更广的范围内也成立,因为\mathrm和\mathrm可以是无限维的。.

核 (线性算子)和秩-零化度定理 · 秩-零化度定理和零空间 · 查看更多 »

线性子空间

线性子空间(或向量子空间)在线性代数和相关的数学领域中是重要的。在没有混淆于其他子空间的时候通常简称为“子空间”。.

核 (线性算子)和线性子空间 · 线性子空间和零空间 · 查看更多 »

线性映射

在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。 “线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。.

核 (线性算子)和线性映射 · 线性映射和零空间 · 查看更多 »

正交补

在数学领域线性代数和泛函分析中,内积空间 V 的子空间 W 的正交补 W^\bot 是正交于 W 中所有向量的所有 V 中向量的集合,也就是 正交补总是闭合在度量拓扑下。在希尔伯特空间中,W 的正交补的正交补是 W 的闭包,就是说 如果 A 是 m \times n 矩阵,而 \mbox A, A 和 \mbox A 分别指称行空间、列空间和零空间,则有 和.

核 (线性算子)和正交补 · 正交补和零空间 · 查看更多 »

上面的列表回答下列问题

核 (线性算子)和零空间之间的比较

核 (线性算子)有25个关系,而零空间有16个。由于它们的共同之处6,杰卡德指数为14.63% = 6 / (25 + 16)。

参考

本文介绍核 (线性算子)和零空间之间的关系。要访问该信息提取每篇文章,请访问: