我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

标量 (数学)和矩阵

快捷方式: 差异相似杰卡德相似系数参考

标量 (数学)和矩阵之间的区别

标量 (数学) vs. 矩阵

在数学中,标量(scalar)是指用来定义向量空间的域的一个元素。由多个标量描述的概念(比如方向、大小等)被称为向量。 在线性代数中,域的元素(如实数)被称为“标量”,通过标量乘法与向量空间中的向量相关联——一个空间中的向量,可通过乘法来得到位于同一向量空间的另一向量。. 數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

之间标量 (数学)和矩阵相似

标量 (数学)和矩阵有(在联盟百科)2共同点: 向量实数

向量

向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.

向量和标量 (数学) · 向量和矩阵 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

实数和标量 (数学) · 实数和矩阵 · 查看更多 »

上面的列表回答下列问题

标量 (数学)和矩阵之间的比较

标量 (数学)有8个关系,而矩阵有194个。由于它们的共同之处2,杰卡德指数为0.99% = 2 / (8 + 194)。

参考

本文介绍标量 (数学)和矩阵之间的关系。要访问该信息提取每篇文章,请访问: