之间李雅普诺夫稳定性和自动控制相似
李雅普诺夫稳定性和自动控制有(在联盟百科)2共同点: 状态空间,数学。
状态空间
态空间是控制工程中的一個名詞。状态是指在系统中可决定系统状态、最小数目变量的有序集合。而所谓状态空间则是指该系统全部可能状态的集合。簡單來說,状态空间可以視為一個以狀態變數為座標軸的空間,因此系統的狀態可以表示為此空間中的一個向量。 状态空间表示法即為一種將物理系統表示為一組輸入、輸出及狀態的數學模式,而輸入、輸出及狀態之間的關係可用許多一階微分方程來描述。 為了使數學模式不受輸入、輸出及狀態的個數所影響,輸入、輸出及狀態都會以向量的形式表示,而微分方程(若是線性非時變系統,可將微分方程轉變為代數方程)則會以矩陣的形式來來表示。 状态空间表示法提供一種方便簡捷的方法來針對多輸入、多輸出的系統進行分析並建立模型。一般頻域的系統處理方式需限制在常係數,啟始條件為0的系統。而状态空间表示法對系統的係數及啟始條件沒有限制。.
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
数学和李雅普诺夫稳定性 · 数学和自动控制 ·
上面的列表回答下列问题
- 什么李雅普诺夫稳定性和自动控制的共同点。
- 什么是李雅普诺夫稳定性和自动控制之间的相似性
李雅普诺夫稳定性和自动控制之间的比较
李雅普诺夫稳定性有28个关系,而自动控制有58个。由于它们的共同之处2,杰卡德指数为2.33% = 2 / (28 + 58)。
参考
本文介绍李雅普诺夫稳定性和自动控制之间的关系。要访问该信息提取每篇文章,请访问: