我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

有类型λ演算和直觉类型论

快捷方式: 差异相似杰卡德相似系数参考

有类型λ演算和直觉类型论之间的区别

有类型λ演算 vs. 直觉类型论

有类型 lambda 演算是使用 lambda 符号(\lambda)指示匿名函数抽象的一种有类型的形式化。有类型 lambda 演算是基础编程语言并且是有类型的函数式编程语言如 ML 和 Haskell 和更间接的指令式编程语言的基础。它们通过 Curry-Howard同构密切关联于直觉逻辑并可以被认为是范畴的类的内部语言,比如简单类型 lambda 演算是笛卡尔闭范畴(CCC)的语言。 传统上,有类型 lambda 演算被看作无类型lambda演算的精细化。更现代的观点把有类型 lambda 演算看做更基础的理论,而把无类型 lambda 演算看作它的只有一个类型的特殊情况。. 觉类型论、或构造类型论、或Martin-Löf 类型论、或就叫类型论是基于数学构造主义的函数式编程语言、逻辑和集合论。直觉类型论由瑞典数学家和哲学家 Per Martin-Löf 在1972年介入。 Martin-Löf 已经多次修改了它的提议;先是非直谓性的而后是直谓性的,先是外延的而后是内涵的类型论变体。 直觉类型论基于的是命题和类型的同一: 一个命题同一于它的证明的类型。这种同一通常叫做Curry-Howard同构,它最初公式化了命题逻辑和简单类型 lambda 演算。类型论通过介入包含着值的依赖类型把这种同一扩展到谓词逻辑。类型论内在化了 Brouwer、Heyting 和 Kolmogorov 提议的叫做 BHK释义的直觉逻辑释义。类型论的类型扮演了类似于集合在集合论的角色,但是在类型论中的函数总是可计算的。.

之间有类型λ演算和直觉类型论相似

有类型λ演算和直觉类型论有(在联盟百科)8共同点: 依赖类型函數程式語言简单类型λ演算系统F编程语言直觉主义逻辑柯里-霍华德同构构造演算

依赖类型

在计算机科学和逻辑中,依赖类型(或依存类型,dependent type)是指依赖于值的类型,其理论同时包含了数学基础中的类型论和计算机编程中用以减少程序错误的类型系统两方面。在 Per Martin-Löf 的直觉类型论中,依赖类型可对应于谓词逻辑中的全称量词和存在量词;在依赖类型函数式编程语言如 ATS、Agda、Dependent ML、Epigram、F* 和 Idris 中,依赖类型系统通过极其丰富的类型表达能力使得程序规范得以借助类型的形式被检查,从而有效减少程序错误。 依赖类型的两个常见实例是依赖函数类型(又称依赖乘积类型、Π-类型)和依赖值对类型(又称依赖总和类型、Σ-类型)。一个依赖类型函数的返回值类型可以依赖于某个参数的具体值,而非仅仅参数的类型,例如,一个输入参数为整型值n的函数可能返回一个长度为n的数组;一个依赖类型值对中的第二个值可以依赖于第一个值,例如,依赖类型可表示这样的类型:它由一对整数组成,其中的第二个数总是大于第一个数。 依赖类型增加了类型系统的复杂度。由于确定两个依赖于值的类型的等价性需要涉及具体的计算,若允许在依赖类型中使用任意值的话,其类型检查将会成为不可判定问题;换言之,无法确保程序的类型检查一定会停机。 由于Curry-Howard同构揭示了程序语言的类型论与证明论的直觉逻辑之间的紧密关联性,以依赖类型系统为基础的编程语言大多同时也作为构造证明与可验证程序的辅助工具而存在,如 Coq 和 Agda(但并非所有证明辅助工具都以类型论为基础);近年来,一些以通用和系统编程为目的的编程语言被设计出来,如 Idris。 一些以证明辅助为主要目的的编程语言采用强函数式编程(total functional programming),这消除了停机问题,同时也意味着通过它们自身的核心语言无法实现任意无限递归,不是图灵完全的,如 Coq 和 Agda;另外一些依赖类型编程语言则是图灵完全的,如 Idris、由 ML 衍生而来的 ATS 和 由 F# 衍生而来的 F*。.

依赖类型和有类型λ演算 · 依赖类型和直觉类型论 · 查看更多 »

函數程式語言

函數式編程(functional programming)或称函数程序设计,又稱泛函編程,是一種編程典範,它將電腦運算視為數學上的函數計算,並且避免使用程序状态以及易变物件。函數程式語言最重要的基礎是λ演算(lambda calculus)。而且λ演算的函數可以接受函數當作輸入(引數)和輸出(傳出值)。 比起指令式編程,函數式編程更加強調程序执行的结果而非执行的过程,倡导利用若干简单的执行单元让计算结果不断渐进,逐层推导复杂的运算,而不是设计一个复杂的执行过程。.

函數程式語言和有类型λ演算 · 函數程式語言和直觉类型论 · 查看更多 »

简单类型λ演算

单类型 lambda 演算(\lambda^\to)是连接词只有 \to (函数类型)的有类型 lambda 演算。这使它成为规范的、在很多方面是最简单的有类型 lambda 演算的例子。 简单类型也被用来称呼对简单类型 lambda 演算的扩展比如积、陪积或自然数(系统 T)甚至完全的递归(如PCF)。相反的,介入了多态类型(如系统F)或依赖类型(如逻辑框架)的系统不被当作是简单类型。简单类型 lambda 演算最初由阿隆佐·邱奇在 1940 年介入来尝试避免无类型 lambda 演算的悖论性使用。.

有类型λ演算和简单类型λ演算 · 直觉类型论和简单类型λ演算 · 查看更多 »

系统F

系统F,也叫做多态lambda演算或二阶lambda演算,是有类型lambda演算。它由逻辑学家Jean-Yves Girard和计算机科学家John C. Reynolds独立发现的。系统F形式化了编程语言中的参数多态的概念。 正如同lambda演算有取值于(rang over)函数的变量,和来自它们的粘合子(binder);二阶lambda演算取值自类型,和来自它们的粘合子。 作为一个例子,恒等函数有形如A→ A的任何类型的事实可以在系统F中被形式化为判断 这里的α是类型变量。 在Curry-Howard同构下,系统F对应于二阶逻辑。 系统F,和甚至更加有表达力的lambda演算一起,可被看作Lambda立方体的一部分。.

有类型λ演算和系统F · 直觉类型论和系统F · 查看更多 »

编程语言

编程语言(programming language),是用来定义计算机程序的形式語言。它是一种被标准化的交流技巧,用来向计算机发出指令。一种计算机语言让程序员能够准确地定义计算机所需要使用的数据,并精确地定义在不同情况下所应当采取的行动。 最早的编程语言是在電腦發明之前產生的,當時是用來控制及自動演奏鋼琴的動作。在電腦領域已發明了上千不同的编程語言,而且每年仍有新的编程語言誕生。很多编程語言需要用指令方式說明計算的程序,而有些编程語言則屬於宣告式編程,說明需要的結果,而不說明如何計算。 编程语言的描述一般可以分為及語義。語法是說明編程語言中,哪些符號或文字的組合方式是正確的,語義則是對於編程的解釋。有些語言是用規格文件定義,例如C語言的規格文件也是ISO標準中一部份,2011年後的版本為ISO/IEC 9899:2011,而其他55語言(像Perl)有一份主要的文件,視為是。.

有类型λ演算和编程语言 · 直觉类型论和编程语言 · 查看更多 »

直觉主义逻辑

觉主义逻辑或构造性逻辑是最初由阿蘭德·海廷开发的为鲁伊兹·布劳威尔的数学直觉主义计划提供形式基础的符号逻辑。这个系统保持跨越生成导出命题的变换的证实性而不是真理性。从实用的观点,也有使用直觉逻辑的强烈动机,因为它有存在性质,这使它还适合其他形式的数学构造主义。.

有类型λ演算和直觉主义逻辑 · 直觉主义逻辑和直觉类型论 · 查看更多 »

柯里-霍华德同构

柯里-霍華德对应是在计算机程序和数学证明之间的紧密联系;这种对应也叫做柯里-霍華德同构、公式为类型对应或命题为类型对应。这是对形式逻辑系统和公式计算(computational calculus)之间符号的相似性的推广。它被认为是由美国数学家哈斯凯尔·加里和逻辑学家William Alvin Howard独立发现的。.

有类型λ演算和柯里-霍华德同构 · 柯里-霍华德同构和直觉类型论 · 查看更多 »

构造演算

构造演算(CoC)是高阶有类型 lambda 演算,这里的类型是一级值。因此在 CoC 内有可能定义从整数到类型、从类型到类型的函数,同从整数到整数的函数一样。CoC 是强规范化的。 CoC 最初由 Thierry Coquand 开发。 CoC 是 Coq 定理证明器早期版本的基础;它后来的版本建造在归纳构造演算之上,这是带有对归纳数据类型的天然支持的 CoC 扩展。在最初的 CoC 中,归纳数据类型必须模拟为它们的多态解构函数。.

有类型λ演算和构造演算 · 构造演算和直觉类型论 · 查看更多 »

上面的列表回答下列问题

有类型λ演算和直觉类型论之间的比较

有类型λ演算有21个关系,而直觉类型论有51个。由于它们的共同之处8,杰卡德指数为11.11% = 8 / (21 + 51)。

参考

本文介绍有类型λ演算和直觉类型论之间的关系。要访问该信息提取每篇文章,请访问: