之间最优化和非线性规划相似
最优化和非线性规划有(在联盟百科)5共同点: 凸函数,函数,約束 (數學),线性规划,欧几里得空间。
凸函数
凸函数是一个定义在某个向量空间的凸子集C(区间)上的实值函数f,如果在其定义域C上的任意两点x,y,以及t\in ,有 也就是说,一个函数是凸的当且仅当其上境图(在函数图像上方的点集)为一个凸集。 如果对于任意的t\in (0,1)有 若對於任意的x,y,z,其中x\le z\le y,都有f(z)\leq \max\, \,\,\, \forall x,y,z \,\,\, x\leq z\leq y,則稱函數f是幾乎凸的。.
函数
函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).
約束 (數學)
在數學中,約束是一個最佳化問題的解需要符合的條件。約束可分為等式约束及不等式约束。符合所有約束的解的集合稱為可行集(feasible set)或是候選解(candidate solution)。.
线性规划
在數學中,線性規劃(Linear Programming,簡稱LP)特指目標函數和約束條件皆為線性的最優化問題。 線性規劃是最優化問題中的一個重要領域。在作業研究中所面臨的許多實際問題都可以用線性規劃來處理,特別是某些特殊情況,例如:網路流、多商品流量等問題,都被認為非常重要。目前已有大量針對線性規劃算法的研究。很多最優化問題算法都可以分解為線性規劃子問題,然後逐一求解。在線性規劃的歷史發展過程中所衍伸出的諸多概念,建立了最優化理論的核心思維,例如「對偶」、「分解」、「凸集」的重要性及其一般化等。在微观经济学和商业管理领域中,线性规划亦被大量应用于例如降低生产过程的成本等手段,最終提升產值與營收。乔治·丹齐格被認爲是线性规划之父。.
最优化和线性规划 · 线性规划和非线性规划 ·
欧几里得空间
欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.
上面的列表回答下列问题
- 什么最优化和非线性规划的共同点。
- 什么是最优化和非线性规划之间的相似性
最优化和非线性规划之间的比较
最优化有38个关系,而非线性规划有24个。由于它们的共同之处5,杰卡德指数为8.06% = 5 / (38 + 24)。
参考
本文介绍最优化和非线性规划之间的关系。要访问该信息提取每篇文章,请访问: