我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

普朗克尺度和黑洞

快捷方式: 差异相似杰卡德相似系数参考

普朗克尺度和黑洞之间的区别

普朗克尺度 vs. 黑洞

在粒子物理與物理宇宙學等領域中,普朗克尺度(紀念馬克斯·普朗克)是指約1.22 × 1019GeV量級的能量尺度;依照質能等價原理,其相當於普朗克質量2.17645 × 10−8公斤。在這樣的尺度重力的量子效應變得重要,而目前描述次原子粒子的量子場論變得不適用,而重力的不可重整化成了問題。透過自然單位制的連結,普朗克尺度也可指長度或時間尺度。 在普朗克尺度,重力的強度變得與其他基本作用力相當,理論物理學家也認為所有的基本作用力在此統合,雖然詳細的機制仍不清楚。普朗克尺度因此是量子重力效應不可忽略的尺度。待發展的量子重力理論則變得必要,目前的研究方案包括弦論、M理論、迴圈量子重力、非交換幾何、因果集以及p-adic數學物理。. 黑洞(英文:black hole)是根據廣義相對論所推論、在宇宙空間中存在的一種質量相當大的天體和星體(並非是一般認知的「洞」概念)。黑洞是由質量足够大的恒星在核聚变反应的燃料耗盡後,發生引力坍缩而形成。黑洞的質量是如此之大,它产生的引力场是如此之强,以致于大量可測物质和辐射都无法逃逸,就連传播速度極快的光子也逃逸不出來。由于类似热力学上完全不反射光线的黑体,故名黑洞。在黑洞的周圍,是一個無法偵測的事件視界,標誌著無法返回的臨界點,而在黑洞中心有一個密度趨近於無限的奇異點。 當恆星內部氫元素全部核融合完畢時,因燃料用完無法抵抗自身重力而開始向內塌陷,但隨著壓力越來越高,內部的重元素會重新開始燃燒導致瞬間膨脹,這時恆星的體積將暴增至原先的數十倍至百倍,這便是紅巨星,質量更大的恆星則會發生超新星爆炸,無論是紅巨星或是超新星,都會將外部物質全部吹飛,直到連重元素也燒完時,重力又會使得恆星繼續向內塌陷,最後形成一顆與月球差不多大小的白矮星,質量稍大的恆星則會形成中子星,會放出規律的電磁波,至於質量更大的恆星則會繼續塌陷,強大的重力使周圍的空間產生扭曲,最後形成一個密度每立方公分約一億噸的天體:「黑洞」。直至目前為止,所發現質量最小的黑洞大約有3.8倍太陽質量。 黑洞無法直接觀測,但可以藉由間接方式得知其存在與質量,並且觀測到它對其他事物的影響。藉由物體被吸入之前因高熱而放出紫外線和X射線的「邊緣訊息」,可以獲取黑洞的存在的訊息。推測出黑洞的存在也可藉由間接觀測恆星或星際雲氣團繞行黑洞軌跡,來取得位置以及質量。 黑洞是天文物理史上,最引人注目的題材之一,在科幻小說、電影甚至報章媒體經常可見將黑洞作為素材。迄今,黑洞的存在已得到天文學界和物理學界的绝大多數研究者所認同,並且天文界不時提出於宇宙中觀測到已存在的黑洞。 根據英國物理學者史蒂芬·霍金於2014年1月26日的論據:愛因斯坦的重力方程式的兩種奇點的解,分別是黑洞跟白洞。不過理論上黑洞應該是一種「有進沒出」的天體,而白洞則只能出而不能進。然而黑洞卻有粒子的輻射,所以不再適合稱其名為黑洞,而應該改其名為「灰洞」,先前認為黑洞可以毀滅資訊情報的看法,是他「最大的失誤」。.

之间普朗克尺度和黑洞相似

普朗克尺度和黑洞有(在联盟百科)4共同点: 史瓦西半徑大爆炸廣義相對論量子力学

史瓦西半徑

史瓦西半徑(Schwarzschild radius)是任何具有質量的物质都存在的一个臨界半徑特征值。在物理学和天文学中,尤其在万有引力理论、广义相对论中,它是一个非常重要的概念。1916年卡爾·史瓦西首次发现了史瓦西半徑的存在,这个半径是一个球状对称、不自转又不帶電荷的物体的重力场的精确解。该值的含义是,如果特定质量的物质被压缩到该半径值之内,将没有任何已知类型的力(如简并压力)可以阻止该物质自身的重力将自己压缩成一个奇点。 對符合條件(即不自轉、不帶電)的任何物体的史瓦西半徑皆与其质量成正比。理論上,太阳的史瓦西半徑约为3公里,地球的史瓦西半徑只有约9毫米。 一個不少於3.2個太陽質量的星體一旦塌縮至小於它的史瓦西半徑便會因為自身重力塌縮成為一點,从而變成黑洞。对于一个已经形成的黑洞来说,若将史瓦西半徑内的物质看作一个系统,则该系统内的任何物质都无法逃逸出该半径之外。换句话说,该半径也是不带电荷无自转黑洞的视界,光和粒子均无法逃离这个球面。由于黑洞的无毛性(即我们无法得到有关黑洞内部的有效信息),再加上目前所知的科学定律在史瓦西半徑内均会失效,因此我们无法观测或者预测史瓦西半徑内的事件。也就是说,我们无法确切知道黑洞内是否存在一个由某种物质组成的球体,如果存在的话,其球体的半径是多少。正因如此,视界通常被认为是黑洞的表面。又因为黑洞视界本身并不好直接测量,史瓦西半徑等类似方法就作为估算视界半径的方法。银河中心的超大質量黑洞的史瓦西半徑估計约为780万公里。一个平均密度等于临界密度的球体的史瓦西半徑等于我们的可觀測宇宙的半径,也就是說如果可觀測宇宙的平均密度為臨界密度,其本身可被理解為一個黑洞。 然而,旋轉黑洞、帶電荷黑洞及旋轉並帶電黑洞的解則較為複雜,在不同的條件下,它們可以有兩层、一层或者甚至沒有视界。.

史瓦西半徑和普朗克尺度 · 史瓦西半徑和黑洞 · 查看更多 »

大爆炸

--又稱大--靂(Big Bang),是描述宇宙的源起與演化的宇宙學模型,这一模型得到了当今科学研究和觀測最廣泛且最精確的支持。宇宙学家通常所指的大爆炸观点为:宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的。根据2015年普朗克卫星所得到的最佳观测结果,宇宙大爆炸距今137.99 ± 0.21亿年,并经过不断的到达今天的状态。 大爆炸这一模型的框架基于爱因斯坦的广义相对论,又在场方程的求解上作出了一定的简化(例如宇宙學原理假设空间的和各向同性)。1922年,苏联物理学家亚历山大·弗里德曼用广义相对论描述了流体,从而给出了这一模型的场方程。1929年,美国物理学家埃德温·哈勃通过观测发现,从地球到达遥远星系的距离正比于这些星系的红移,从而推导出宇宙膨胀的观点。1927年时勒梅特通过求解弗里德曼方程已经在理论上提出了同样的观点,这个解后来被称作弗里德曼-勒梅特-罗伯逊-沃尔克度规。哈勃的观测表明,所有遥远的星系和星系团在视線速度上都在远离我们这一观察点,并且距离越远退行视速度越大 。如果当前星系和星团间彼此的距离在不断增大,则说明它们在过去曾经距离很近。从这一观点物理学家进一步推测:在过去宇宙曾经处于一个密度极高且温度极高的状态,大型粒子加速器在类似条件下所进行的实验结果则有力地支持了这一理论。然而,由于当前技术原因,粒子加速器所能达到的高能范围还十分有限,因而到目前为止,还没有证据能够直接或间接描述膨胀初始的极短时间内的宇宙状态。从而,大爆炸理论还无法对宇宙的初始状态作出任何描述和解释,事实上它所能描述并解释的是宇宙在初始状态之后的演化图景。当前所观测到的宇宙中氢元素的丰度,和理论所预言的宇宙早期快速膨胀并冷却过程中,最初的几分钟内通过核反应所形成的这些元素的理论丰度值非常接近,定性并定量描述宇宙早期形成的氢元素丰度的理论被称作太初核合成。 大爆炸一词首先是由英国天文学家弗雷德·霍伊尔所采用的。霍伊尔是与大爆炸对立的宇宙学模型——穩態學說的倡导者,他在1949年3月BBC的一次广播节目中将勒梅特等人的理论称作“这个大爆炸的观点”。虽然有很多通俗轶事记录霍伊尔这样讲是出于讽刺,但霍伊尔本人明确否认了这一点,他声称这只是为了着重说明这两个模型的显著不同之处。霍伊尔后来为恒星核合成的研究做出了重要贡献,这是恒星内部通过核反应利用氢元素制造出某些重元素的途径。1964年发现的宇宙微波背景辐射是支持大爆炸确实发生的重要证据,特别是当测得其频谱从而绘制出它的黑体辐射曲线之后,大多数科学家都开始相信大爆炸理论了。.

大爆炸和普朗克尺度 · 大爆炸和黑洞 · 查看更多 »

廣義相對論

广义相对论是現代物理中基于相对性原理利用几何语言描述的引力理论。该理论由阿尔伯特·爱因斯坦等人自1907年开始发展,最终在1915年基本完成。广义相对论将经典的牛顿万有引力定律與狭义相对论加以推廣。在广义相对论中,引力被描述为时空的一种几何属性(曲率),而时空的曲率则通过爱因斯坦场方程和处于其中的物质及辐射的能量與动量联系在一起。 从广义相对论得到的部分预言和经典物理中的对应预言非常不同,尤其是有关时间流易、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——广义相对论虽然并非当今描述引力的唯一理论,但却是能够与实验数据相符合的最简洁的理论。不过仍然有一些问题至今未能解决。最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。 爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用。比如它预言了某些大质量恒星终结后,会形成时空极度扭曲以至于所有物质(包括光)都无法逸出的区域,黑洞。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们可能观察到处于遥远位置的同一个天体形成的多个像。广义相对论还预言了引力波的存在。引力波已经由激光干涉引力波天文台在2015年9月直接观测到。此外,广义相对论还是现代宇宙学中的的理论基础。.

廣義相對論和普朗克尺度 · 廣義相對論和黑洞 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

普朗克尺度和量子力学 · 量子力学和黑洞 · 查看更多 »

上面的列表回答下列问题

普朗克尺度和黑洞之间的比较

普朗克尺度有34个关系,而黑洞有90个。由于它们的共同之处4,杰卡德指数为3.23% = 4 / (34 + 90)。

参考

本文介绍普朗克尺度和黑洞之间的关系。要访问该信息提取每篇文章,请访问: