之间星周盤和柯伊伯带相似
星周盤和柯伊伯带有(在联盟百科)7共同点: 原行星盤,太陽星雲,奥尔特云,小行星,小行星帶,微行星,角动量。
原行星盤
原行星盤(Proplyd or Protoplanetary Disc)是在新形成的年輕恆星(如金牛T星)外圍繞的濃密氣體,因為氣體會從盤的內側落入恆星的表面,所以可以視為是一個吸積盤。但是,不能將這個過程與恆星形成時的吸積混淆在一起。 環繞金牛座T的原行星盤,溫度與大小都與雙星周圍的盤不同。原行星盤的半徑可以達到1,000天文單位,但是溫度並不高,在它們最內側的溫度也不過1,000K,並且經常有噴流伴隨著。 典型的原行星盤來自主要是氫分子的分子雲。當分子雲分得的大小達臨界質量或是密度,將會因自身重力而塌縮。而當雲氣開始塌縮,這時可稱為太陽星雲,密度將變得更高,原本在雲氣中隨機運動的分子,也因而呈現出星雲平均的淨角動量運動方向,角動量守恆導致星雲縮小的同時,自轉速度亦增加。這種自轉也導致星雲逐漸扁平,就像製作意大利薄餅一樣,形成盤狀。從崩塌起約十萬年後,恆星表面的溫度與主序帶上相同質量的恆星相同時,恆星將變得可以被看見,就像金牛座T的情況。吸積盤中的氣體在未來的一千萬年中,盤面消失前,仍會繼續落入恆星。盤面可能是被年輕恆星的恆星風吹散,或僅僅是因為吸積之後,單純的停止輻射而結束。發現的最老的原行星盤已經存在了二千五百萬年之久。 太陽系形成的星雲假說描述原行星盤如何發展成行星系統。靜電和引力互相作用在盤面上的塵埃粒子和顆粒,使它們生常成為星子。這個過程與會將氣體吹散的恆星風競爭,將氣體累積並將物質拉入金牛座T的中心。 在我們的銀河系內,已經觀測到一些年輕恆星周圍的原行星盤。第一個是在1984年發現的繪架座β,最近的則是哈伯太空望遠鏡發現在獵戶座大星雲內正在形成的原恆星盤。 天文學家已經在距離太陽不遠的恆星,天琴座織女星、北冕座貫索四、和南魚座北落師門,發現大量的原行星盤材料,或許本身就已經是原行星盤。 包含織女和北落師門的北河二共同運動星團被分辨出來。利用希巴古衛星資料,估計北河二星團年齡約二億年(誤差約一億年),這顯示以紅外線觀察到的織女和北落師門周圍的殘餘物質可能已成星子,而不僅僅是原行星盤了。哈伯太空望遠鏡已經成功的觀測北落師門的原行星盤,並證實猜測。.
太陽星雲
太陽星雲相信是讓地球所在的太陽系形成的氣體雲氣,這個星雲假說最早是在1734年由伊曼紐·斯威登堡提出的。在1755年,熟知斯威登堡工作的康德將理論做了更進一步的開發,他認為在星雲慢慢的旋轉下,由於引力的作用雲氣逐漸坍塌和漸漸變得扁平,最後形成恆星和行星。拉普拉斯在1796年也提出了相同的模型。這些可以被認為是早期的宇宙論。 當初僅適用於我們自己太陽系的形成理論,在我們的銀河系內發現了超過200個外太陽系之後,理論學家認為這個理論應該要能適用整個宇宙中的行星形成。.
奥尔特云
奧爾特雲,又稱奧匹克-奧爾特雲,在理論上是一個圍繞太陽、主要由冰微行星組成的球體雲團。奧爾特雲位於星際空間之中,距離太陽最遠至10萬天文單位(約2光年)左右,也就是太陽和比鄰星距離的一半。同樣由海王星外天體組成的凱伯帶和離散盤與太陽的距離不到奧爾特雲的千分之一。奧爾特雲的外邊緣標誌著太陽系結構上的邊緣,也是太陽引力影響範圍的邊緣。 奧爾特雲由2個部份組成:一個球形外層和一個盤形內層,後者又稱希爾斯雲(Hills cloud)。奧爾特雲天體的主要成份為水冰、氨和甲烷等固體揮發物。 天文學家猜測,組成奧爾特雲的物質最早位於距太陽更近的地方,在太陽系形成早期因木星和土星的引力作用而分散到今天較遠的位置。目前對奧爾特雲沒有直接的觀測證據,但科學家仍然認為它是所有長週期彗星、進入內太陽系的哈雷類彗星、半人馬小行星及木星族彗星的發源之地。奧爾特雲外層受太陽系的引力牽制較弱,因此很容易受到臨近恒星和整個銀河系的引力影響。這些擾動都會不時導致奧爾特雲天體離開原有軌道,進入內太陽系,並成為彗星。根據軌道推算,大部份短週期彗星都可能來自於離散盤,其餘的仍有可能來自奧爾特雲。.
小行星
小行星是太陽系内類似行星環繞太陽運動,但體積和質量比行星小得多的天體。 至今為止在太陽系內一共已經發現了約127萬顆小行星,但這可能僅是所有小行星中的一小部分,只有少數這些小行星的直徑大於100公里。到1990年代為止最大的小行星是穀神星,但近年在古柏帶內發現的一些小行星的直徑比穀神星要大,比如2000年發現的伐樓拿(Varuna)的直徑為900公里,2002年發現的誇歐爾(Quaoar)直徑為1280公里,2004年發現的厄耳枯斯的直徑甚至可能達到1800公里。2003年發現的塞德娜(小行星90377)位於古柏帶以外,其直徑約為1500公里。 根據估計,小行星的數目應該有數百萬,詳見小行星列表,而最大型的小行星現在開始重新分類,被定義為矮行星。.
小行星帶
#重定向 主小行星帶.
微行星
微行星被認為是存在於原行星盤和岩屑盤內的固態物體。 一種被廣為接受的行星形成理論是維克托·薩夫羅諾夫(Viktor Safronov)的微行星假說,說明行星的形成是由微小的塵埃顆粒經由不斷的碰撞和黏合,形成越來越大的個體。當這個個體的直徑達到大約1公里的大小,就可以直接經由相互間的重力吸引,更快地形成月球尺度的原行星,成為龐然大物。這就是微行星如何經常被定義的。比微行星小的物體依賴布朗運動或是氣體中的湍流運動,使彼此間能發生足以導致黏合的碰撞。還有,微行星也可能在原行星盤的盤面中段塵埃顆粒密集成層的區域,因為經歷重力的不穩定而聚集。許多的微行星會因為劇烈的撞擊而破碎,但是一些最大的微行星可能經歷這個階段後仍能存在並繼續增長成為原行星,然後成為行星。 一般相信這個時期大約在38億年前,在經歷了後期重轟炸期的階段之後,大部分在太陽系內的微行星不是完全被拋出太陽系外,就是進入距離異常遙遠的軌道,例如歐特雲,或是被來自類木行星(特別是木星和海王星)規則的重力輕輕的推送而與更大的物體碰撞。少數的微行星可能被捕獲成為衛星,像是火衛一和火衛二,以及類木行星許多高傾角的衛星。 到今天仍然存在的微行星對科學家是非常有價值的,因為它們蘊含了有關我們的太陽系誕生時的訊息。雖然它們的外表的化學組成可能已經被強烈的太陽輻射改變,但內部的成分基本上仍是微行星形成時未被碰觸過的原始物質。這使每個微行星都像“時間膠囊”,它們的結構能告訴我們太陽星雲以及我們的行星系統形成時的條件。 參考隕石和彗星。.
角动量
在物理学中,角动量是与物体的位置向量和动量相关的物理量。對於某慣性參考系的原點\mathbf,物體的角動量是物体的位置向量和动量的叉積,通常写做\mathbf。角动量是矢量。 其中,\mathbf表示物体的位置向量,\mathbf表示角动量。\mathbf表示动量。角動量\mathbf又可寫為: 其中,I表示杆状系统的转动惯量,\boldsymbol是角速度矢量。 假設作用於物體的外力矩和為零,則物體的角动量是守恒的。需要注意的是,由于成立的条件不同,角动量是否守恒与动量是否守恒没有直接的联系。 當物體的運動狀態(動量)發生變化,則表示物體受力作用,而作用力大小就等於動量\mathbf的時變率:\mathbf.
上面的列表回答下列问题
- 什么星周盤和柯伊伯带的共同点。
- 什么是星周盤和柯伊伯带之间的相似性
星周盤和柯伊伯带之间的比较
星周盤有20个关系,而柯伊伯带有76个。由于它们的共同之处7,杰卡德指数为7.29% = 7 / (20 + 76)。
参考
本文介绍星周盤和柯伊伯带之间的关系。要访问该信息提取每篇文章,请访问: