徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

旋转

指数 旋转

旋转在几何和线性代数中是描述刚体围绕一个固定点的运动的在平面或空间中的变换。旋转不同于没有固定点的平移,和翻转变换的形体的反射。旋转和上面提及的变换是等距的,它们保留在任何两点之间的距离在变换之后不变。.

21 关系: 劍橋大學出版社反射 (数学)向量平移交換律刚体几何学四元數矩阵矩陣乘法等距同构线性代数順時針方向齐次坐标轴角自旋欧几里得空间欧拉公式欧拉角施普林格科学+商业媒体旋转矩阵

劍橋大學出版社

劍橋大學出版社(Cambridge University Press)隸屬於英國劍橋大學,成立於1534年,是世界上僅次於牛津大學出版社的第二大大學出版社。.

新!!: 旋转和劍橋大學出版社 · 查看更多 »

反射 (数学)

在数学中,反射是把一个物体变换成它的镜像的映射。要反射一个平面图形,需要“镜子”是一条直线(反射轴),对于三维空间中的反射就要使用平面作为镜子。反射有时被认为是圆反演的特殊情情况,参考圆有无限半径。 在几何上说,要找到一个点的反射,可从这个点向反射轴画一条垂线。并在另一边延续相同的距离。要找到一个图形的反射,需要反射这个图形的每个点。 两次反射回到原来的地方。反射保持在点之间的距离。反射不移动在镜子上的点,镜子的维数比发生反射的空间的维数要小1。这些观察允许我们形式化反射的定义:反射是欧几里得空间的对合等距同构,它的不动点集合是余维数为1的仿射子空间。 在经历特定反射后不改变的图形被称为有反射对称性。 密切关联于反射的是斜反射和圆反演。这些变换仍对合于有余维数1的不动点的集合,但它们不再是等距的。.

新!!: 旋转和反射 (数学) · 查看更多 »

向量

向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.

新!!: 旋转和向量 · 查看更多 »

平移

在仿射幾何,平移(translation)是將物件的每點向同一方向移動相同距離。 它是等距同構,是仿射空間中仿射變換的一種。它可以視為將同一個向量加到每點上,或將坐標系統的中心移動所得的結果。即是說,若\mathbf是一個已知的向量,\mathbf是空間中一點,平移T_(\mathbf).

新!!: 旋转和平移 · 查看更多 »

交換律

交換律(Commutative property)是被普遍使用的一個數學名詞,意指能改變某物的順序而不改變其最終結果。交換律是大多數數學分支中的基本性質,而且許多的數學證明需要倚靠交換律。簡單運算的交換律許久都被假定存在,且沒有給定其一特定的名稱,直到19世紀,數學家開始形式化數學理論之後,交換律才被聲明。.

新!!: 旋转和交換律 · 查看更多 »

刚体

在物理学裏,理想刚体(rigid body)是一種有限尺寸,可以忽略形变的固体。不论是否感受到外力,在刚体內部,質點與質點之间的距离都不会改变。这种理想模型适用条件是,运动过程比固体中的弹性波的传播要缓慢得多。根據相對論,這種物體不可能實際存在,但物體通常可以假定為完美剛體,前提是必須滿足運動速度遠小於光速的條件。 在经典力学裡,刚体通常被視為连续质量分佈体;在量子力学裏,刚体被視為一群粒子的聚集。例如,分子(由假定為質點的电子与核子组成)时常會被视为刚体。.

新!!: 旋转和刚体 · 查看更多 »

几何学

笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.

新!!: 旋转和几何学 · 查看更多 »

四元數

四元數是由爱尔兰數學家威廉·盧雲·哈密頓在1843年创立出的數學概念。 從明確地角度而言,四元數是複數的不可交換延伸。如把四元數的集合考慮成多維實數空間的話,四元數就代表著一個四维空间,相對於複數為二维空间。 作为用于描述现实空间的坐标表示方式,人们在复数的基础上创造了四元数并以a+bi+cj+dk的形式说明空间点所在位置。 i、j、k作为一种特殊的虚数单位参与运算,并有以下运算规则:i0.

新!!: 旋转和四元數 · 查看更多 »

矩阵

數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

新!!: 旋转和矩阵 · 查看更多 »

矩陣乘法

這篇文章給出多種矩陣相乘方法的綜述。.

新!!: 旋转和矩陣乘法 · 查看更多 »

等距同构

在数学中,「等距同构」或稱「保距映射」(isometry),是指在度量空间之中保持距离不变的同构关系。几何学中的对应概念是全等变换。 等距同构经常用于将一个空间嵌入到另一空间的构造中。例如,测度空间M的完备化即涉及从M到M' 的等距同构,这里M' 是M上柯西序列所构成的空间关于“距离为零”的等价关系的商集。这样,原空间M就等距同构到完备的度量空间的一个稠密子空间并且通常用这一空间来指代原空间M。 其它的嵌入构造表明每一度量空间都等距同构到某一賦範向量空間的一个闭子集以及每一完备度量空间都等距同构到某一巴拿赫空间的一个闭子集。 一个希尔伯特空间上的等距、满射的线性算子被称为酉算子。.

新!!: 旋转和等距同构 · 查看更多 »

线性代数

线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.

新!!: 旋转和线性代数 · 查看更多 »

順時針方向

以順時針方向運行指依從時針移動的方向運行(如右上圖),即可視為由右上方向下,然後轉向左,再回到上。數學上,在直角坐标系以方程式x.

新!!: 旋转和順時針方向 · 查看更多 »

齐次坐标

在數學裡,齊次坐標(homogeneous coordinates),或投影坐標(projective coordinates)是指一個用於投影幾何裡的坐標系統,如同用於歐氏幾何裡的笛卡兒坐標一般。該詞由奧古斯特·費迪南德·莫比烏斯於1827年在其著作《Der barycentrische Calcul》一書內引入。齊次坐標可讓包括無窮遠點的點坐標以有限坐標表示。使用齊次坐標的公式通常會比用笛卡兒坐標表示更為簡單,且更為對稱。齊次坐標有著廣泛的應用,包括電腦圖形及3D電腦視覺。使用齊次坐標可讓電腦進行仿射變換,並通常,其投影變換能簡單地使用矩陣來表示。 如一個點的齊次坐標乘上一個非零純量,則所得之坐標會表示同一個點。因為齊次坐標也用來表示無窮遠點,為此一擴展而需用來標示坐標之數值比投影空間之維度多一。例如,在齊次坐標裡,需要兩個值來表示在投影線上的一點,需要三個值來表示投影平面上的一點。.

新!!: 旋转和齐次坐标 · 查看更多 »

轴角

旋转的轴角表示用两个值参数化了旋转: 一个轴或直线,和描述绕这个轴的旋转量的一个角。它也叫做旋转的指数坐标。 有时也叫做旋转向量表示,因为这两个参数(轴和角)可用在这个轴上的其模是旋转角的一个向量来表示。.

新!!: 旋转和轴角 · 查看更多 »

自旋

在量子力学中,自旋(Spin)是粒子所具有的内稟性質,其運算規則類似於經典力學的角動量,並因此產生一個磁場。雖然有時會與经典力學中的自轉(例如行星公轉時同時進行的自轉)相類比,但實際上本質是迥異的。經典概念中的自轉,是物體對於其質心的旋轉,比如地球每日的自轉是順著一個通過地心的極軸所作的轉動。 首先對基本粒子提出自轉與相應角動量概念的是1925年由、喬治·烏倫貝克與三人所開創。他們在處理電子的磁場理論時,把電子想象为一個帶電的球體,自轉因而產生磁場。後來在量子力學中,透過理論以及實驗驗證發現基本粒子可視為是不可分割的點粒子,所以物體自轉無法直接套用到自旋角動量上來,因此僅能將自旋視為一種内禀性質,為粒子與生俱來帶有的一種角動量,並且其量值是量子化的,無法被改變(但自旋角動量的指向可以透過操作來改變)。 自旋對原子尺度的系統格外重要,諸如單一原子、質子、電子甚至是光子,都帶有正半奇數(1/2、3/2等等)或含零正整數(0、1、2)的自旋;半整數自旋的粒子被稱為費米子(如電子),整數的則稱為玻色子(如光子)。複合粒子也帶有自旋,其由組成粒子(可能是基本粒子)之自旋透過加法所得;例如質子的自旋可以從夸克自旋得到。.

新!!: 旋转和自旋 · 查看更多 »

欧几里得空间

欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.

新!!: 旋转和欧几里得空间 · 查看更多 »

欧拉公式

欧拉公式(Euler's formula,又稱尤拉公式)是在複分析领域的公式,将三角函数與複數指数函数相关联,因其提出者莱昂哈德·欧拉而得名。尤拉公式提出,對任意實数x,都存在 其中e是自然對数的底數,i是虛數單位,而\cos和\sin則是餘弦、正弦對應的三角函数,参数x則以弧度为单位。這一複數指數函數有時還寫作\operatorname(x)(cosine plus i sine,余弦加i正弦)。由於該公式在x為複數時仍然成立,所以也有人將這一更通用的版本稱為尤拉公式。 当 x.

新!!: 旋转和欧拉公式 · 查看更多 »

欧拉角

萊昂哈德·歐拉用歐拉角來描述剛體在三維歐幾里得空間的取向。對於任何參考系,一個剛體的取向,是依照順序,從這參考系,做三個歐拉角的旋轉而設定的。所以,剛體的取向可以用三個基本旋轉矩陣來決定。換句話說,任何關於剛體旋轉的旋轉矩陣是由三個基本旋轉矩陣複合而成的。.

新!!: 旋转和欧拉角 · 查看更多 »

施普林格科学+商业媒体

施普林格科学+商业媒体(Springer Science+Business Media)或施普林格(Springer,),在柏林成立,是一个总部位于德国的世界性出版公司,它出版教科书、学术参考书以及同行评论性杂志,专--于科学、技术、数学以及医学领域。在科学、技术与医学领域中,施普林格是最大的书籍出版者,以及第二大世界性杂志出版者(最大的是爱思唯尔)。施普林格拥有超过60个出版社,每年出版1,900种杂志,5,500种新书,营业额为9.24亿欧元(2006年),雇有超过5,000名员工 。施普林格在柏林、海德堡、多德雷赫特(位于荷兰)与纽约设有主办事处。施普林格亚洲总部设在香港。2005年8月,施普林格在北京成立代表处。.

新!!: 旋转和施普林格科学+商业媒体 · 查看更多 »

旋转矩阵

旋转矩阵(Rotation matrix)是在乘以一个向量的时候有改变向量的方向但不改变大小的效果并保持了手性的矩阵。旋转矩阵不包括点反演,点反演可以改变手性,也就是把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。旋转可分为主动旋转与被动旋转。主动旋转是指将向量逆时针围绕旋转轴所做出的旋转。被动旋转是对坐标轴本身进行的逆时针旋转,它相当于主动旋转的逆操作。.

新!!: 旋转和旋转矩阵 · 查看更多 »

重定向到这里:

旋轉旋轉運動

传出传入
嘿!我们在Facebook上吧! »