我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

斯特凡·巴拿赫和等距同构

快捷方式: 差异相似杰卡德相似系数参考

斯特凡·巴拿赫和等距同构之间的区别

斯特凡·巴拿赫 vs. 等距同构

斯特凡·巴拿赫(Stefan Banach,),波兰数学家。. 在数学中,「等距同构」或稱「保距映射」(isometry),是指在度量空间之中保持距离不变的同构关系。几何学中的对应概念是全等变换。 等距同构经常用于将一个空间嵌入到另一空间的构造中。例如,测度空间M的完备化即涉及从M到M' 的等距同构,这里M' 是M上柯西序列所构成的空间关于“距离为零”的等价关系的商集。这样,原空间M就等距同构到完备的度量空间的一个稠密子空间并且通常用这一空间来指代原空间M。 其它的嵌入构造表明每一度量空间都等距同构到某一賦範向量空間的一个闭子集以及每一完备度量空间都等距同构到某一巴拿赫空间的一个闭子集。 一个希尔伯特空间上的等距、满射的线性算子被称为酉算子。.

之间斯特凡·巴拿赫和等距同构相似

斯特凡·巴拿赫和等距同构有(在联盟百科)3共同点: 巴拿赫空间内积空间数学

巴拿赫空间

在數學裡,尤其是在泛函分析之中,巴拿赫空間是一個完備賦範向量空間。更精確地說,巴拿赫空間是一個具有範數並對此範數完備的向量空間。 巴拿赫空間有兩種常見的類型:「實巴拿赫空間」及「複巴拿赫空間」,分別是指將巴拿赫空間的向量空間定義於由實數或複數組成的--之上。 許多在數學分析中學到的無限維函數空間都是巴拿赫空間,包括由連續函數(緊緻赫斯多夫空間上的連續函數)組成的空間、由勒貝格可積函數組成的Lp空間及由全純函數組成的哈代空間。上述空間是拓撲向量空間中最常見的類型,這些空間的拓撲都自來其範數。 巴拿赫空間是以波蘭數學家斯特凡·巴拿赫的名字來命名,他和漢斯·哈恩及愛德華·赫麗於1920-1922年提出此空間。.

巴拿赫空间和斯特凡·巴拿赫 · 巴拿赫空间和等距同构 · 查看更多 »

内积空间

内积空间是数学中的线性代数裡的基本概念,是增添了一个额外的结构的向量空间。这个额外的结构叫做内积或标量积。内积将一对向量与一个标量连接起来,允许我们严格地谈论向量的“夹角”和“长度”,并进一步谈论向量的正交性。内积空间由欧几里得空间抽象而来(内积是点积的抽象),这是泛函分析讨论的课题。 内积空间有时也叫做准希尔伯特空间(pre-Hilbert space),因为由内积定义的距离完备化之后就会得到一个希尔伯特空间。 在早期的著作中,内积空间被称作--空间,但这个词现在已经被淘汰了。在将内积空间称为--空间的著作中,“内积空间”常指任意维(可数或不可数)的欧几里德空间。.

内积空间和斯特凡·巴拿赫 · 内积空间和等距同构 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

数学和斯特凡·巴拿赫 · 数学和等距同构 · 查看更多 »

上面的列表回答下列问题

斯特凡·巴拿赫和等距同构之间的比较

斯特凡·巴拿赫有25个关系,而等距同构有32个。由于它们的共同之处3,杰卡德指数为5.26% = 3 / (25 + 32)。

参考

本文介绍斯特凡·巴拿赫和等距同构之间的关系。要访问该信息提取每篇文章,请访问: