之间數論主題列表和超越數相似
數論主題列表和超越數有(在联盟百科)12共同点: 代數數,化圓為方,圓周率,刘维尔数,無理數,E (数学常数),黎曼ζ函數,林德曼-魏尔斯特拉斯定理,格尔丰德-施奈德定理,有理数,数论,2的√2次方。
代數數
代數數是代数与数论中的重要概念,指任何整係數多项式的复根。 所有代数数的集合构成一个域,称为代数数域(与定义为有理数域的有限扩张的代数数域同名,但不是同一个概念),记作\mathcal或\overline,是复数域\mathbb的子域。 不是代数数的实数称为超越数,例如圆周率。.
代數數和數論主題列表 · 代數數和超越數 ·
化圓為方
化圓為方是古希臘数学里尺規作圖领域當中的命題,和三等分角、倍立方問題被並列為尺规作图三大难题。其問題為:求一正方形,其面積等於一給定圓的面積。如果尺规能够化圆为方,那么必然能够从单位长度出发,用尺规作出长度为\pi的线段。 进入十九世纪后,随着群论和域论的发展,数学家对三大难题有了本质性的了解。尺规作图问题可以归结为判定某些数是否满足特定的条件,满足条件的数也被称为规矩数。所有规矩数都是代数数。而1882年,数学家林德曼證明了\pi為超越數,因此也證實該問題僅用尺規是無法完成的。 如果放寬尺规作图的限制或允许使用其他工具,化圆为方的問題是可行的。如借助西皮阿斯的,阿基米德螺線等。.
化圓為方和數論主題列表 · 化圓為方和超越數 ·
圓周率
圓周率是一个数学常数,为一个圆的周长和其直径的比率,约等於3.14159。它在18世纪中期之后一般用希腊字母π指代,有时也拼写为“pi”()。 因为π是一个无理数,所以它不能用分数完全表示出来(即它的小数部分是一个无限不循环小数)。当然,它可以用像\frac般的有理数的近似值表示。π的数字序列被認為是随机分布的,有一种统计上特别的随机性,但至今未能证明。此外,π还是一个超越数——它不是任何有理数系数多项式的根。由於π的超越性质,因此不可能用尺规作图解化圆为方的问题。 几个文明古国在很早就需要计算出π的较精确的值以便于生产中的计算。公元5世纪时,南朝宋数学家祖冲之用几何方法将圆周率计算到小数点后7位数字。大约同一时间,印度的数学家也将圆周率计算到小数点后5位。历史上首个π的精确无穷级数公式(即π的莱布尼茨公式)直到约1000年后才由印度数学家发现。在20和21世纪,由于计算机技术的快速发展,借助计算机的计算使得π的精度急速提高。截至2015年,π的十进制精度已高达1013位。当前人类计算π的值的主要原因为打破记录、测试超级计算机的计算能力和高精度乘法算法,因为几乎所有的科学研究对π的精度要求都不会超过几百位。 因为π的定义中涉及圆,所以π在三角学和几何学的许多公式,特别是在圆形、椭球形或球形相關公式中广泛应用。由于用於特征值这一特殊作用,它也在一些数学和科学领域(例如数论和统计中计算数据的几何形状)中出现,也在宇宙学,热力学,力学和电磁学中有所出现。π的广泛应用使它成为科学界内外最广为人知的常数之一。人们已经出版了几本专门介绍π的书籍,圆周率日(3月14日)和π值计算突破记录也往往会成为报纸的新闻头条。此外,背诵π值的世界记录已经达到70,000位的精度。.
圓周率和數論主題列表 · 圓周率和超越數 ·
刘维尔数
如果一个实数x满足,对任意正整数n,存在整数p, q,其中q > 1有 就把x叫做刘维尔数。 刘维尔在1844年证明了所有刘维尔数都是超越数,第一次说明了超越数的存在。.
刘维尔数和數論主題列表 · 刘维尔数和超越數 ·
無理數
無理數是指除有理数以外的实数,當中的「理」字来自于拉丁语的rationalis,意思是「理解」,实际是拉丁文对于logos「说明」的翻译,是指无法用两个整数的比来说明一个无理数。 非有理數之實數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會循環,即无限不循环小数。常見的無理數有大部分的平方根、π和e(其中後兩者同時為超越數)等。無理數的另一特徵是無限的連分數表達式。 傳說中,无理数最早由畢達哥拉斯學派弟子希伯斯发现。他以幾何方法證明\sqrt無法用整数及分數表示。而畢達哥拉斯深信任意数均可用整数及分数表示,不相信無理數的存在。後來希伯斯触犯学派章程,将无理数透露给外人,因而被扔进海中处死,其罪名竟然等同于“渎神”。另見第一次數學危機。 無理數可以通過有理數的分划的概念進行定義。.
數論主題列表和無理數 · 無理數和超越數 ·
E (数学常数)
-- e,作为數學常數,是自然對數函數的底數。有時被稱為歐拉數(Euler's number),以瑞士數學家歐拉命名;還有個較少見的名字納皮爾常數,用來紀念蘇格蘭數學家約翰·納皮爾引進對數。它是一个无限不循环小数,數值約是(小數點後20位,):.
E (数学常数)和數論主題列表 · E (数学常数)和超越數 ·
黎曼ζ函數
黎曼ζ函數ζ(s)的定義如下: 設一複數s,其實數部份> 1而且: \sum_^\infin \frac 它亦可以用积分定义: 在区域上,此无穷级数收敛并为一全纯函数(其中Re表示--的实部,下同)。欧拉在1740考虑过s为正整数的情况,后来切比雪夫拓展到s>1。波恩哈德·黎曼认识到:ζ函数可以通过解析开拓来扩展到一个定义在复数域(s, s≠ 1)上的全纯函数ζ(s)。这也是黎曼猜想所研究的函数。 虽然黎曼的ζ函数被数学家认为主要和“最纯”的数学领域数论相关,它也出现在应用统计学(参看齊夫定律(Zipf's Law)和(Zipf-Mandelbrot Law))、物理,以及调音的数学理论中。.
林德曼-魏尔斯特拉斯定理
林德曼-魏尔斯特拉斯定理()是一个可以用于证明实数的超越性的定理。它表明,如果 是代数数,在有理数 内是线性独立的,那么e^, \ldots,e^在 内是代数独立的;也就是说,扩张域\mathbb(e^, \ldots,e^)在 内具有超越次数 。 一个等价的表述是:如果 是不同的代数数,那么指数 在代数数范围内是线性独立的。 这个定理由林德曼和魏尔斯特拉斯命名。林德曼在1882年证明了对于任何非零的代数数α,eα都是超越数,因此推出了圆周率是超越数。魏尔斯特拉斯在1885年证明了一个更一般的结果。 这个定理,以及格尔丰德-施奈德定理,可以推广为Schanuel猜想。.
數論主題列表和林德曼-魏尔斯特拉斯定理 · 林德曼-魏尔斯特拉斯定理和超越數 ·
格尔丰德-施奈德定理
格尔丰德-施奈德定理(Gelfond–Schneider theorem)是一个可以用于证明许多数的超越性的结果。这个定理由Aleksandr Gelfond在1934年、Theodor Schneider在1935年分别独立证明,它回答了希尔伯特第七问题。.
數論主題列表和格尔丰德-施奈德定理 · 格尔丰德-施奈德定理和超越數 ·
有理数
数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.
數論主題列表和有理数 · 有理数和超越數 ·
数论
數論是纯粹数学的分支之一,主要研究整数的性質。被譽為「最純」的數學領域。 正整数按乘法性质划分,可以分成質数,合数,1,質数產生了很多一般人也能理解而又懸而未解的問題,如哥德巴赫猜想,孿生質數猜想等,即。很多問題虽然形式上十分初等,事实上却要用到许多艰深的数学知识。这一领域的研究从某种意义上推动了数学的发展,催生了大量的新思想和新方法。數論除了研究整數及質數外,也研究一些由整數衍生的數(如有理數)或是一些廣義的整數(如代數整數)。 整数可以是方程式的解(丟番圖方程)。有些解析函數(像黎曼ζ函數)中包括了一些整數、質數的性質,透過這些函數也可以了解一些數論的問題。透過數論也可以建立實數和有理數之間的關係,並且用有理數來逼近實數(丟番圖逼近)。 數論早期稱為算術。到20世紀初,才開始使用數論的名稱,而算術一詞則表示「基本運算」,不過在20世紀的後半,有部份數學家仍會用「算術」一詞來表示數論。1952年時數學家Harold Davenport仍用「高等算術」一詞來表示數論,戈弗雷·哈羅德·哈代和愛德華·梅特蘭·賴特在1938年寫《數論介紹》簡介時曾提到「我們曾考慮過將書名改為《算術介紹》,某方面而言是更合適的書名,但也容易讓讀者誤會其中的內容」。 卡尔·弗里德里希·高斯曾說:「數學是科學的皇后,數論是數學的皇后。.
2的√2次方
2^的值为: 阿勒克山德·格爾豐德利用格尔丰德-施奈德定理证明这是一个超越数,回答了希尔伯特第七问题。 它的平方根也是一个超越数。 这可以用来说明一个无理数的无理数次方有时可以是有理数,因为这个数的\sqrt次方等于2。 即:.
上面的列表回答下列问题
- 什么數論主題列表和超越數的共同点。
- 什么是數論主題列表和超越數之间的相似性
數論主題列表和超越數之间的比较
數論主題列表有163个关系,而超越數有36个。由于它们的共同之处12,杰卡德指数为6.03% = 12 / (163 + 36)。
参考
本文介绍數論主題列表和超越數之间的关系。要访问该信息提取每篇文章,请访问: