数据挖掘和線性回歸
快捷方式: 差异,相似,杰卡德相似系数,参考。
数据挖掘和線性回歸之间的区别
数据挖掘 vs. 線性回歸
数据挖掘(data mining)是一个跨学科的计算机科学分支 它是用人工智能、机器学习、统计学和数据库的交叉方法在相對較大型的中发现模式的计算过程。数据挖掘过程的总体目标是从一个数据集中提取信息,并将其转换成可理解的结构,以进一步使用。除了原始分析步骤,它还涉及到数据库和数据管理方面、、模型与推断方面考量、兴趣度度量、复杂度的考虑,以及发现结构、可视化及在线更新等后处理。数据挖掘是“資料庫知識發現”(KDD)的分析步骤。数据挖掘:实用机器学习技术及Java实现》一书大部分是机器学习的内容。这本书最初只叫做“实用机器学习”,“数据挖掘”一词是后来为了营销才加入的。通常情况下,使用更为正式的术语,(大规模)数据分析和分析学,或者指出实际的研究方法(例如人工智能和机器学习)会更准确一些。 数据挖掘的实际工作是对大规模数据进行自动或半自动的分析,以提取过去未知的有价值的潜在信息,例如数据的分组(通过聚类分析)、数据的异常记录(通过异常检测)和数据之间的关系(通过关联式规则挖掘)。这通常涉及到数据库技术,例如。这些潜在信息可通过对输入数据处理之后的总结来呈现,之后可以用于进一步分析,比如机器学习和预测分析。举个例子,进行数据挖掘操作时可能要把数据分成多组,然后可以使用决策支持系统以获得更加精确的预测结果。不过数据收集、数据预处理、结果解释和撰写报告都不算数据挖掘的步骤,但是它们确实属于“資料庫知識發現”(KDD)过程,只不过是一些额外的环节。 类似词语“”、“数据捕鱼”和“数据探测”指用数据挖掘方法来采样(可能)过小以致无法可靠地统计推断出所发现任何模式的有效性的更大总体数据集的部分。不过这些方法可以建立新的假设来检验更大数据总体。. 在统计学中,线性回归(Linear regression)是利用称为线性回归方程的最小平方函數对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。(这反过来又应当由多个相关的因变量预测的多元线性回归区别,而不是一个单一的标量变量。) 在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X和y的联合概率分布(多元分析领域)。 线性回归是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其未知参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。 线性回归有很多实际用途。分为以下两大类:.
之间数据挖掘和線性回歸相似
数据挖掘和線性回歸有(在联盟百科)2共同点: 统计学,迴歸分析。
统计学是在資料分析的基础上,研究测定、收集、整理、归纳和分析反映數據資料,以便给出正确訊息的科學。這一门学科自17世纪中叶产生并逐步发展起来,它廣泛地應用在各門學科,從自然科学、社會科學到人文學科,甚至被用於工商業及政府的情報決策。隨著大数据(Big Data)時代來臨,統計的面貌也逐漸改變,與資訊、計算等領域密切結合,是資料科學(Data Science)中的重要主軸之一。 譬如自一組數據中,可以摘要並且描述這份數據的集中和離散情形,這個用法稱作為描述統計學。另外,觀察者以數據的形態,建立出一個用以解釋其隨機性和不確定性的數學模型,以之來推論研究中的步驟及母體,這種用法被稱做推論統計學。這兩種用法都可以被稱作為應用統計學。數理統計學则是討論背後的理論基礎的學科。.
数据挖掘和统计学 · 線性回歸和统计学 · 查看更多 »
迴歸分析()是一種統計學上分析數據的方法,目的在於了解兩個或多個變數間是否相關、相關方向與強度,並建立數學模型以便觀察特定變數來預測研究者感興趣的變數。更具体的来说,回归分析可以帮助人们了解在只有一个自变量变化时因变量的变化量。一般来说,通过回归分析我们可以由给出的自变量估计因变量的条件期望。 迴歸分析是建立因變數Y(或稱依變數,反應變數)與自變數X(或稱獨變數,解釋變數)之間關係的模型。簡單線性回歸使用一個自變量X,複迴歸使用超過一個自變量(X_1, X_2...
数据挖掘和迴歸分析 · 線性回歸和迴歸分析 · 查看更多 »
上面的列表回答下列问题
- 什么数据挖掘和線性回歸的共同点。
- 什么是数据挖掘和線性回歸之间的相似性
数据挖掘和線性回歸之间的比较
数据挖掘有54个关系,而線性回歸有27个。由于它们的共同之处2,杰卡德指数为2.47% = 2 / (54 + 27)。
参考
本文介绍数据挖掘和線性回歸之间的关系。要访问该信息提取每篇文章,请访问: