我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

数学史和柯西积分定理

快捷方式: 差异相似杰卡德相似系数参考

数学史和柯西积分定理之间的区别

数学史 vs. 柯西积分定理

数学史的主要研究对象是历史上的数学发现,以及调查它们的起源,或更广义地说,数学史就是对过去的数学方法与数学符号的探究。 数学起源于人类早期的生产活动,为古中国六艺之一,亦被古希腊学者视为哲学之起点。數學最早用於人們計數、天文、度量甚至是貿易的需要。這些需要可以簡單地被概括為數學對結構、空間以及時間的研究;對結構的研究是從數字開始的,首先是從我們稱之為初等代數的——自然數和整數以及它們的算術關係式開始的。更深層次的研究是數論;對空間的研究則是從幾何學開始的,首先是歐幾里得幾何和類似於三維空間(也適用於多或少維)的三角學。後來產生了非歐幾里得幾何,在相對論中扮演著重要角色。 在进入知识可以向全世界传播的现代社会以前,有记录的新数学发现仅仅在很少几个地区重见天日。目前最古老的数学文本是《普林顿 322》(古巴比伦,约公元前1900年),《莱因德数学纸草书》(古埃及,约公元前2000年-1800年),以及《莫斯科数学纸草书》(古埃及,约公元前1890年)。以上这些文本都涉及到了如今被称为毕达哥拉斯定理的概念,后者可能是继简单算术和几何后,最古老和最广泛传播的数学发现。 在公元前6世纪后,毕达哥拉斯将数学作为一门实证的学科进行研究,他创造了古希腊语单词μάθημα(mathema),意为“(被人们学习的)知识学问”。希腊数学家在相当大的程度上改进了这些数学方法(特别引入了演绎推理和严谨的数学证明),并扩大了数学的主题。中国数学做了早期贡献,包括引入了位值制系统。如今大行于世的印度-阿拉伯数字系统和运算方法,很可能是在公元后1000年的印度逐渐演化,并被伊斯兰数学家通过花拉子米的著作将其传到了西方。伊斯兰数学则将以上这些文明的数学做了进一步的发展贡献。许多古希腊和伊斯兰数学著作随后被翻译成了拉丁文,引领了中世纪欧洲更深入的数学发展。 从16世纪文艺复兴时期的意大利开始,算术、初等代数及三角学等初等数学已大体完备。17世纪变数概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。 从古代到中世纪,数学发展的历史时期都伴随着数个世纪的停滞,但从16世纪以来,新的数学发展伴随新的科学发展,让数学不断加速大步前进,直至今日。. 柯西积分定理(或稱柯西-古薩定理),是一个关于复平面上全纯函数的路径积分的重要定理。柯西积分定理说明,如果从一点到另一点有两个不同的路径,而函数在两个路径之间处处是全纯的,则函数的两个路径积分是相等的。另一个等价的说法是,单连通闭合区域上的全纯函数沿着任何可求长闭合曲线的积分是0.

之间数学史和柯西积分定理相似

数学史和柯西积分定理有(在联盟百科)0共同点。

上面的列表回答下列问题

数学史和柯西积分定理之间的比较

数学史有153个关系,而柯西积分定理有14个。由于它们的共同之处0,杰卡德指数为0.00% = 0 / (153 + 14)。

参考

本文介绍数学史和柯西积分定理之间的关系。要访问该信息提取每篇文章,请访问: