我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

数学分析和解析解

快捷方式: 差异相似杰卡德相似系数参考

数学分析和解析解之间的区别

数学分析 vs. 解析解

数学分析(mathematical analysis)区别于其他非数学类学生的高等数学内容,是分析学中最古老、最基本的分支,一般指以微积分学、无穷级数和解析函數等的一般理论为主要内容,并包括它们的理论基础(实数、函数、測度和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。出自《数学辞海(第一卷)》 数学分析研究的內容包括實數、複數、實函數及複變函數。数学分析是由微積分演進而來,在微积分发展至现代阶段中,从应用中的方法总结升华为一类综合性分析方法,且初等微積分中也包括許多數學分析的基礎概念及技巧,可以认为这些应用方法是高等微积分生成的前提。数学分析的方式和其幾何有關,不過只要任一數學空間有定義鄰域(拓扑空间)或是有針對兩物件距離的定義(度量空间),就可以用数学分析的方式進行分析。. 解析解,又稱為閉式解,是可以用解析表達式來表達的解。 在数学上,如果一个方程或者方程组存在的某些解,是由有限次常见运算的組合给出的形式,则称该方程存在解析解。二次方程的根就是一个解析解的典型例子。在低年级数学的教学当中,解析解也被称为公式解。 当解析解不存在时,比如五次以及更高次的代数方程,则该方程只能用数值分析的方法求解近似值。大多數偏微分方程,尤其是非线性偏微分方程,都只有數值解。 解析表達式的准确含义依赖于何种运算称为常见运算或常见函数。传统上,只有初等函数被看作常见函数(由於初等函數的運算總是獲得初等函數,因此初等函數的運算集合具有閉包性質,所以又稱此種解為閉式解),无穷级数、序列的极限、连分数等都不被看作常见函数。按这种定义,许多累积分布函数无法写成解析表達式。但如果把特殊函数,比如误差函数或gamma函数也看作常见函数,则累积分布函数可以写成解析表達式。 在计算机应用中,这些特殊函数因为大多有现成的数值法实现,它们通常被看作常见运算或常见函数。实际上,在计算机的计算过程中,多数基本函数都是用数值法计算的,所以所谓的基本函数和特殊函数对计算机而言并无区别。 J J J en:Analytical expression ja:解析解.

之间数学分析和解析解相似

数学分析和解析解有(在联盟百科)4共同点: 偏微分方程级数集合方程

偏微分方程

偏微分方程(partial differential equation,缩写作PDE)指含有未知函数及其偏导数的方程。描述自变量、未知函數及其偏导數之間的關係。符合這個關係的函数是方程的解。 偏微分方程分為線性偏微分方程式與非線性偏微分方程式,常常有幾個解而且涉及額外的邊界條件。.

偏微分方程和数学分析 · 偏微分方程和解析解 · 查看更多 »

级数

在数学中,一个有穷或无穷的序列u_0,u_1,u_2 \cdots的元素的形式和S称为级数。序列u_0,u_1,u_2 \cdots中的项称作级数的通项。级数的通项可以是实数、矩阵或向量等常量,也可以是关于其他变量的函数,不一定是一个数。如果级数的通项是常量,则称之为常数项级数,如果级数的通项是函数,则称之为函数项级数。常见的简单有穷数列的级数包括等差数列和等比数列的级数。 有穷数列的级数一般通过初等代数的方法就可以求得。如果序列是无穷序列,其和则称为无穷级数,有时也简称為级数。无穷级数有发散和收敛的区别,称为无穷级数的敛散性。判断无穷级数的敛散性是无穷级数研究中的主要工作。无穷级数在收敛时才會有一个和;发散的无穷级数在一般意义上没有和,但可以用一些别的方式来定义。 无穷级数的研究更多的需要数学分析的方法来解决。无穷级数一般写作\textstyle a_1 + a_2 +a_3+ \cdots、\textstyle \sum a_n或者\textstyle \sum_^\infty a_n,级数收敛时,其和通常被表示为\textstyle \sum_^\infty a_n。.

数学分析和级数 · 级数和解析解 · 查看更多 »

集合

集合可以指:.

数学分析和集合 · 解析解和集合 · 查看更多 »

方程

数学中方程可以简单的理解为含有未知数的等式。例如以下的方程: 其中的x為未知數。 如果把数学当作语言,那么方程可以为人们提供一些用来描述他们所感兴趣的对象的语法,它可以把未知的元素包含到陈述句当中(比如用“相等”这个词来构成的陈述句),因此如果人们对某些未知的元素感兴趣,但是用数学语言去精确地表达那些确定未知元素的条件时需要用到未知元素本身,这时人们就常常用方程来描述那些条件,并且形成这样一个问题:能使这些条件满足的元素是什么?在某个集合内,能使方程中所描述的条件被满足的元素称为方程在这个集合中的解(比如代入某个數到含未知数的等式,使等式中等号左右两边相等)。 求出方程的解或说明方程无解这一过程叫做解方程。可以用方程的解的存在状况为方程分类,例如,恒等式即恒成立的方程,例如(y + 2)^2.

数学分析和方程 · 方程和解析解 · 查看更多 »

上面的列表回答下列问题

数学分析和解析解之间的比较

数学分析有118个关系,而解析解有19个。由于它们的共同之处4,杰卡德指数为2.92% = 4 / (118 + 19)。

参考

本文介绍数学分析和解析解之间的关系。要访问该信息提取每篇文章,请访问: