徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

数学分析和物理学

快捷方式: 差异相似杰卡德相似系数参考

数学分析和物理学之间的区别

数学分析 vs. 物理学

数学分析(mathematical analysis)区别于其他非数学类学生的高等数学内容,是分析学中最古老、最基本的分支,一般指以微积分学、无穷级数和解析函數等的一般理论为主要内容,并包括它们的理论基础(实数、函数、測度和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。出自《数学辞海(第一卷)》 数学分析研究的內容包括實數、複數、實函數及複變函數。数学分析是由微積分演進而來,在微积分发展至现代阶段中,从应用中的方法总结升华为一类综合性分析方法,且初等微積分中也包括許多數學分析的基礎概念及技巧,可以认为这些应用方法是高等微积分生成的前提。数学分析的方式和其幾何有關,不過只要任一數學空間有定義鄰域(拓扑空间)或是有針對兩物件距離的定義(度量空间),就可以用数学分析的方式進行分析。. 物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

之间数学分析和物理学相似

数学分析和物理学有(在联盟百科)10共同点: 希尔伯特空间微积分学经典力学热力学生物学相对论阿基米德量子力学量子场论電機工程學

希尔伯特空间

在数学裡,希尔伯特空间即完备的内积空间,也就是說一個帶有內積的完備向量空間。是有限维欧几里得空间的一个推广,使之不局限于實數的情形和有限的维数,但又不失完备性(而不像一般的非欧几里得空间那样破坏了完备性)。与欧几里得空间相仿,希尔伯特空间也是一个内积空间,其上有距离和角的概念(及由此引申而来的正交性与垂直性的概念)。此外,希尔伯特空间还是一个完备的空间,其上所有的柯西序列會收敛到此空間裡的一點,从而微积分中的大部分概念都可以无障碍地推广到希尔伯特空间中。希尔伯特空间为基于任意正交系上的多项式表示的傅立叶级数和傅立叶变换提供了一种有效的表述方式,而这也是泛函分析的核心概念之一。希尔伯特空间是公設化数学和量子力学的关键性概念之一。.

希尔伯特空间和数学分析 · 希尔伯特空间和物理学 · 查看更多 »

微积分学

微積分學(Calculus,拉丁语意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的科學,正如:幾何學是研究形狀的科學、代數學是研究代數運算和解方程的科學一樣。微積分學又稱為“初等數學分析”。 微積分學在科學、經濟學、商業管理學和工業工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和解析幾何學的基礎上建立起来,主要包括微分學、積分學。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演绎。積分學,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是現代數學的主要分支之一。.

微积分学和数学分析 · 微积分学和物理学 · 查看更多 »

经典力学

经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基本学科。在物理學裏,经典力学是最早被接受为力學的一个基本綱領。经典力学又分为静力学(描述静止物体)、运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。16世纪,伽利略·伽利莱就已采用科学实验和数学分析的方法研究力学。他为后来的科学家提供了许多豁然开朗的启示。艾萨克·牛顿则是最早使用数学语言描述力学定律的科学家。.

数学分析和经典力学 · 物理学和经典力学 · 查看更多 »

热力学

热力学,全稱熱動力學(thermodynamique,Thermodynamik,thermodynamics,源於古希腊语θερμός及δύναμις)是研究热现象中物态转变和能量转换规律的学科;它着重研究物质的平衡状态以及与準平衡态的物理、化学过程。热力学定義許多巨觀的物理量(像溫度、內能、熵、壓強等),描述各物理量之間的關係。热力学描述數量非常多的微觀粒子的平均行為,其定律可以用統計力學推導而得。 熱力學可以總結為四條定律。 熱力學第零定律定義了温度這一物理量,指出了相互接觸的两个系統,熱流的方向。 熱力學第一定律指出内能這一物理量的存在,並且與系統整體運動的動能和系統与與環境相互作用的位能是不同的,區分出熱與功的轉換。 熱力學第二定律涉及的物理量是温度和熵。熵是研究不可逆过程引入的物理量,表征系統通過熱力學過程向外界最多可以做多少熱力學功。 熱力學第三定律認為,不可能透過有限過程使系統冷却到絕對零度。 熱力學可以應用在許多科學及工程的領域中,例如:引擎、相變化、化學反應、輸運現象甚至是黑洞。熱力學計算的結果不但對物理的其他領域很重要,對航空工程、航海工程、車輛工程、機械工程、細胞生物學、生物醫學工程、化學、化學工程及材料科學等科學技術領域也很重要,甚至也可以應用在經濟學中。 热力学是从18世纪末期发展起来的理论,主要是研究功與热量之間的能量轉換;在此功定義為力與位移的內積;而熱則定義為在熱力系統邊界中,由溫度之差所造成的能量傳遞。兩者都不是存在於熱力系統內的性質,而是在熱力過程中所產生的。 熱力學的研究一開始是為了提昇蒸汽引擎的效率,早期尼古拉·卡諾有許多的貢獻,他認為若引擎效率提昇,法國有可能贏得拿破崙戰爭。出生於愛爾蘭的英國科學家開爾文在1854年首次提出了熱力學明確的定義: 一開始熱力學研究關注在熱機中工質(如蒸氣)的熱力學性質,後來延伸到化学过程中的能量轉移,例如在1840年科學家杰迈因·亨利·盖斯提出,有關化學反應的能量轉移的研究。化學熱力學中研究熵對化學反應的影響Gibbs, Willard, J. (1876).

数学分析和热力学 · 热力学和物理学 · 查看更多 »

生物学

生物学研究各種生命(上图) 大肠杆菌、瞪羚、(下图)大角金龟甲虫 、蕨類植物 生物學(βιολογία;biologia;德語、法語:biologie;biology)或稱生物科學(biological sciences)、生命科學(life sciences),是自然科學的一大門類,由經驗主義出發,廣泛研究生命的所有方面,包括生命起源、演化、分佈、構造、發育、功能、行為、與環境的互動關系,以及生物分類學等。現代生物學是一個龐大而兼收並蓄的領域,由許多分支和分支學科組成。然而,盡管生物學的範圍很廣,在它裡面有某些一般和統一概念支配一切的學習和研究,把它整合成單一的,和連貫的領域。在總體上,生物以細胞作為生命的基本單位,基因作為遺傳的基本單元,和進化是推動新物種的合成和創建的引擎。今天人們還了解,所有生物體的生存以消耗和轉換能量,調節體內環境以維持穩定的和重要的生命條件。 生物學分支學科被研究生物體的規模所定義,和研究它們使用的方法所定義:生物化學考察生命的基本化學;分子生物學研究生物分子之間錯綜復雜的關系;植物學研究植物的生物學;細胞生物學檢查所有生命的基本組成單位,細胞;生理學檢查組織,器官,和生物體的器官系統的物理和化學的功能;進化生物學考察了生命的多樣性的產生過程;和生態學考察生物在其環境如何相互作用。最終能夠達到治療診斷遺傳病、提高農作物產量、改善人類生活、保護環境等目的。.

数学分析和生物学 · 物理学和生物学 · 查看更多 »

相对论

对论(Theory of relativity)是关于时空和引力的理论,主要由愛因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非古典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。.

数学分析和相对论 · 物理学和相对论 · 查看更多 »

阿基米德

阿基米德(´Αρχιμήδης;),希腊化时代的数学家、物理学家、发明家、工程师、天文学家。出生于西西里岛的锡拉库扎,据说他在亞歷山卓求学时期,发明了阿基米德式螺旋抽水机,今天的埃及仍在使用。第二次布匿战争时,罗马大军围攻锡拉库扎,阿基米德死于罗马士兵之手。 阿基米德对数学和物理学的影响极为深远,被视为古希臘最杰出的科学家。他與牛頓和高斯被西方世界評價為有史以來最偉大的三位數學家。.

数学分析和阿基米德 · 物理学和阿基米德 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

数学分析和量子力学 · 物理学和量子力学 · 查看更多 »

量子场论

在理論物理學中,量子场论(Quantum field theory)是由量子力學和狹義相對論互相融合後的物理理論。已被廣泛的應用在粒子物理學和凝聚體物理學中。量子場論為描述多自由度系統,尤其是包含粒子產生和湮滅過程的過程,提供了有效的描述框架。非相對論性的量子場論又稱量子多體理論,主要被應用於凝聚體物理學,比如描述超導性的BCS理論。而相對論性的量子場論則是粒子物理學不可或缺的組成部分。自然界中人類目前所知的基本相互作用有四種:強相互作用、電磁相互作用、弱相互作用和引力。除去引力的話,另外三種相互作用都已找到了合適滿足特定對稱性的量子場論來描述:強作用有量子色動力學;電磁相互作用有量子電動力學,理論框架建立於1920到1950年間,主要的貢獻者為保羅·狄拉克,弗拉迪米爾·福克,沃爾夫岡·泡利,朝永振一郎,施溫格,理查德·費曼和弗里曼·戴森等;弱作用有費米點作用理論。後來弱作用和電磁相互作用實現了形式上的統一,通過希格斯機制產生質量,建立了弱電統一的量子規範理論,即GWS(Glashow, Weinberg, Salam)模型。量子場論成為現代理論物理學的主流方法和工具。 而這些交互作用傳統上是由費曼圖來視覺化,並且提供簡便的計算規則來計算各種多體系統過程。.

数学分析和量子场论 · 物理学和量子场论 · 查看更多 »

電機工程學

電機工程學是以電子學、電磁學等物理学分支为基础,涵盖電子學、電子計算機、電力工程、电信、控制工程、訊號處理等子领域的一門工程學。十九世紀後半期以來,隨著電報、電話、電能在供應與使用方面的商業化,該學科逐漸發展為相對獨立的專業領域。 電機工程廣義上涵蓋該領域的分支,但在有些地方,「電機工程學」(Electrical Engineering)一詞的意義有時不包括「電子工程學」(Electronic Engineering)。 這個情況下,「電機工程學」是指涉及到大能量的電力系統(如電能傳輸、重型電機機械及電動機),而「電子工程」則是指處理小信號的電子系統(如計算機和積體電路)。 另一種區分法為,電力工程師著重於電能的傳輸,而電子工程師則著重於利用電子訊號進行資訊的傳輸。這些子領域的範圍有時也會重疊:例如,電力電子學使用電力電子元件對電能進行變換和控制;又如,智慧電網偵測電能供應者的電能供應狀況與一般家庭使用者的電能使用狀況,并据之調整家電用品的耗電量,以此达到节约能源、降低损耗、增强輸電網路可靠性的目的。因此,電機工程亦函蓋電子工程部分領域的專業知識。.

数学分析和電機工程學 · 物理学和電機工程學 · 查看更多 »

上面的列表回答下列问题

数学分析和物理学之间的比较

数学分析有118个关系,而物理学有275个。由于它们的共同之处10,杰卡德指数为2.54% = 10 / (118 + 275)。

参考

本文介绍数学分析和物理学之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »