之间数学和集合 (数学)相似
数学和集合 (数学)有(在联盟百科)7共同点: 偏序关系,子集,序理论,公理系统,自然数,集合论,整数。
偏序关系
偏序集合(Partially ordered set,简写poset)是数学中,特别是序理论中,指配备了部分排序关系的集合。 这个理論將排序、顺序或排列这个集合的元素的直觉概念抽象化。这种排序不必然需要是全部的,就是说不必要保证此集合内的所有对象的相互可比较性。部分排序集合定义了部分排拓扑。.
偏序关系和数学 · 偏序关系和集合 (数学) ·
子集
子集,為某個集合中一部分的集合,故亦稱部分集合。 若A和B为集合,且A的所有元素都是B的元素,则有:.
子集和数学 · 子集和集合 (数学) ·
序理论
序理论是研究捕获数学排序的直觉概念的各种二元关系的数学分支。.
序理论和数学 · 序理论和集合 (数学) ·
公理系统
数学上,一个公理系统(或称公理化系统,公理体系,公理化体系)是一个公理的集合,从中一些或全部公理可以一併用來逻辑地导出定理。一个数学理论由一个公理系统和所有它导出的定理组成。一个完整描述出来的公理系统是形式系统的一个特例;但是通常完全形式化的努力僅带来在确定性上递减的收益,并让人更加難以阅读。所以,公理系统的讨论通常只是半形式化的。一个形式化理论通常表示一个公理系统,例如在模型论中表述的那样。一个形式化证明是一个证明在形式化系统中的表述。.
公理系统和数学 · 公理系统和集合 (数学) ·
自然数
数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.
数学和自然数 · 自然数和集合 (数学) ·
集合论
集合論(Set theory)或稱集論,是研究集合(由一堆構成的整體)的數學理論,包含集合和元素(或稱為成員)、關係等最基本數學概念。在大多數現代數學的公式化中,都是在集合論的語言下談論各種。集合論、命題邏輯與謂詞邏輯共同構成了數學的公理化基礎,以未定義的「集合」與「集合成員」等術語來形式化地建構數學物件。 現代集合論的研究是在1870年代由俄国数学家康托爾及德國数学家理察·戴德金的樸素集合論開始。在樸素集合論中,集合是當做一堆物件構成的整體之類的自證概念,沒有有關集合的形式化定義。在發現樸素集合論會產生一些後,二十世紀初期提出了許多公理化集合論,其中最著名的是包括選擇公理的策梅洛-弗蘭克爾集合論,簡稱ZFC。公理化集合論不直接定義集合和集合成員,而是先規範可以描述其性質的一些公理。 集合論常被視為數學基礎之一,特別是 ZFC 集合論。除了其基礎的作用外,集合論也是數學理論中的一部份,當代的集合論研究有許多離散的主題,從實數線的結構到大基数的一致性等。.
数学和集合论 · 集合 (数学)和集合论 ·
整数
整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.
数学和整数 · 整数和集合 (数学) ·
上面的列表回答下列问题
- 什么数学和集合 (数学)的共同点。
- 什么是数学和集合 (数学)之间的相似性
数学和集合 (数学)之间的比较
数学有219个关系,而集合 (数学)有32个。由于它们的共同之处7,杰卡德指数为2.79% = 7 / (219 + 32)。
参考
本文介绍数学和集合 (数学)之间的关系。要访问该信息提取每篇文章,请访问: