数学和经度
数学和经度之间的区别
数学 vs. 经度
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。. 经度是一种用于确定地球表面上不同点东西位置的地理坐标。经度是一种角度量,通常用度来表示,并被记作希腊字母λ(lande)。子午线穿过南极和北极并把相同经度的点连起来。按照惯例,本初子午线是经过伦敦格林威治皇家天文台的子午线,是0度经线所在地。其他位置的经度是通过测量其从本初子午线向东或向西经过的角度得到的,经度的範圍为从本初子午线0° 向东至180°E 和向西至180° W。具体来说,某位置的经度是一个通过本初子午线的平面和一个通过南极、北极和该位置的平面所组成的二面角。(这就组成了一个右手坐标系,其z轴(右手拇指)从地球中心指向北极方向,其x轴(右手食指)从地球中心指向本初子午线与赤道的交点。) 如果地球是一个均质球体,那么一点的经度就等于过该点的南北铅垂面和格林尼治子午面之间夹角的角度。地球上任何地方的南北铅垂面都会包含地球的自转轴。但是地球并不是均质的,而是有很多山脉,在山脉的重力影响下,铅垂面就会偏离地球的自转轴。即便如此,南北铅垂面仍然会和格林尼治子午面相交于某个角度,该角度被称为天文经度,通过天文观测来确定。地图和GPS设备上显示的经度是格林尼治子午面与过该点的一个非严格铅垂面之间夹角的角度,该非严格铅垂面垂直于一个近似于大地水准面的椭球体表面,而不是直接垂直于大地水准面本身。 作为起点,过去其它国家或人也使用过其它的子午线做起点,比如罗马、哥本哈根、耶路撒冷、圣彼德堡、比萨、巴黎和费城等。在1884年的国际本初子午线大会上格林维治的子午线被正式定为经度的起点。東經180°即西經180°,約等同於國際日期變更線,國際日期變更線的兩邊,日期相差一日。 经度的每一度被分为60角分,每一分被分为60秒。一个经度因此一般看上去是这样的:东经23° 27′ 30"或西经23° 27′ 30"。更精确的经度位置中秒被表示为分的小数,比如:东经23° 27.500′,但也有使用度和它的小数的:东经23.45833°。有时西经被写做负数:-23.45833°。偶尔也有人把东经写为负数,但这相当不常规。 一个经度和一个纬度一起确定地球上一个地点的精确位置。纬度的每个度的距離大约相当于111km,但经度的每个度的距离从0km到111km不等。它的距离随纬度的不同而变化,沿同一緯度約等于111km乘纬度的余弦。不过这个距离还不是相隔一经度的两点之间最短的距离,最短的距离是连接这两点之间的大圆的弧的距离,它比上面所计算出来的距离要小一些。 一个地点的经度一般与它于协调世界时之间的时差相应:每天有24小时,而一个圆圈有360度,因此地球每小时自转15度。因此假如一个人的地方时比协调世界时早3小时的话,那么他在东经45度左右。不过由于时区的分划也有政治因素在里面,因此一个人所在的时区不一定与上面的计算相符。但通过对地方时的测量一个人可以算得出他所在的地点的经度。为了计算这个数据,他需要一个指示协调世界时的钟和需要观察对太阳经过子午圈的时间。由于地球在一个椭圆轨道上绕太阳旋转,这个计算和观察比上面叙述的还要复杂些。.
之间数学和经度相似
数学和经度有(在联盟百科)0共同点。
上面的列表回答下列问题
- 什么数学和经度的共同点。
- 什么是数学和经度之间的相似性
数学和经度之间的比较
数学有219个关系,而经度有54个。由于它们的共同之处0,杰卡德指数为0.00% = 0 / (219 + 54)。
参考
本文介绍数学和经度之间的关系。要访问该信息提取每篇文章,请访问: