徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

放射性和铜

快捷方式: 差异相似杰卡德相似系数参考

放射性和铜之间的区别

放射性 vs. 铜

放射性或輻射性是指元素從不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成穩定的元素而停止放射(衰变产物),這種現象稱為放射性。衰变时放出的能量称为衰变能量。原子序數在83(鉍)或以上的元素都具有放射性,但某些原子序數小于83的元素(如锝)也具有放射性。而有趣的是,從原子序84開始一直到鉳元素有以下特性:原子序是偶數的,半衰期都比相邻的长。这是由於原子序数为偶數的元素的原子核含有適當數量的質子和中子,能够形成有利的配置結構。〈即魔數〉 對單一原子來說,放射性衰变依照量子力學是隨機過程,無法預測特定一個原子是否會衰变。不過原子衰变的機率不會隨著原子存在的時間長短而改變。對大量的原子而言,可以用量測衰變常數計算衰變速率及半衰期。其半衰期沒有已知的時間上下限,範圍可以到55個數量級,短至幾乎瞬間,長至久於宇宙年齡。 有許多種不同的放射性衰变。衰变或是能量的減少都會使有某種原子核的原子(父放射核素)轉變為有另一種原子核的原子,或是其中子或質子的數量不同,稱為子體核素。在一些衰变中,父放射核素和子體核素是不同的化學元素,因此衰变後產生了新的元素,這稱為核嬗变。 最早發現的衰变是α衰變、β衰變、γ衰變。α衰變是原子核放出α粒子(氦原子核),是最常見釋放核子的衰變,不過原子核偶爾也會釋放質子,或者釋放其他特殊的核子(稱為)。β衰變是原子核釋放電子(或正子)及反微中子,會將質子轉變為中子(或是將中子轉變為質子) 。核子也可能捕獲軌道上的電子,使質子轉變為中子,這為電子捕獲,上述的衰变都屬於核嬗变。 相反的,也有一些核衰变不會產生新的元素,受激態原子核的能量以伽馬射線的方式釋出,稱為伽馬衰变,或是將激发态原子核将能量转移至轨道电子上,轨道电子再脱离原子,稱為。若是核子中有大量高度受激的中子,有時會以中子發射的方式釋放能量。另外一種核衰变是將原來的原子核變為二個或多個較小的原子核,稱為自發性的核分裂,出現在大量的不穩定核子自發性的衰变時,一般也會釋放伽馬射線、中子或是其他粒子。 著名的例子像是鈾和釷,但也包括在自然界中,半衰期長的同位素,例如钾-40。例如15種是半衰期短的同位素,像鐳及氡,是由衰變後的產物,也有因為而產生的,像碳-14就是由宇宙射線撞擊氮-14而產生。放射性同位素也可能是因為粒子加速器或核反應爐而人工合成,其中有650種的半衰期超過一小時,有數千種的半衰期更短。. 铜(copper)是化学元素,化学符号Cu(来自cuprum),原子序数29。纯铜是柔软的金属,表面刚切开时为红橙色帶金屬光澤、延展性好、导热性和导电性高,因此在电缆和电气、电子元件是最常用的材料,也可用作建筑材料,以及組成众多種合金。铜合金机械性能优异,电阻率很低,其中最重要的是青铜和黄铜。此外,铜也是耐用的金属,可以多次回收而无损其机械性能。 人类使用铜及其合金已有数千年历史。古罗马时期铜的主要开采地是塞浦路斯,因此最初得名cyprium(意为塞浦路斯的金属),后来变为cuprum,这是copper、cuivre和Kupfer的来源。二价铜盐是常见的铜化合物,常呈蓝色或绿色,是蓝铜矿和绿松石等矿物颜色的来源,历史上曾广泛用作颜料。铜质建筑结构受腐蚀后会产生铜绿(碱式碳酸铜)。装饰艺术主要使用金属铜和含铜的颜料。 铜是所有生物所必需的微量膳食矿物质,因为它是呼吸酶复合体细胞色素c氧化酶的关键组分。软体动物和甲壳亚门动物的血液色素血蓝蛋白中含有铜。鱼类和其他哺乳动物的血液中则是含铁的复合物血红蛋白。铜在人体中主要分布于肝脏、肌肉和骨骼中。铜的化合物可用作、杀真菌剂和木材防腐剂。.

之间放射性和铜相似

放射性和铜有(在联盟百科)9共同点: 原子序数半衰期同位素化學元素电镀質量數正电子发射放射性

原子序数

原子序数(Atomic Number)是一个原子核内质子的数量,因此也稱質子數,也等於原子電中性時的核外電子數。拥有同一原子序的原子属于同一化学元素。原子序数的符号是Z。 通常原子序数标在元素符号的左下方: 1H是氢,8O是氧。 但特定元素的原子序总是确定的,因此这个值很少这样写。 德米特里·门捷列夫在制定其元素周期表时发现,假如将元素按其原子核质量来排列会出现一些不规则的情况。比如碲的原子核比碘重,但从化学性能上来说,碲明显是与氧、硫、硒一族的,而碘与氟、氯、溴是一族的,也就是说,碘要排在碲之后。1913年亨利·莫塞莱发现这个异常的解决方法是不按原子重量,而按原子核的电荷数,即原子序来排列。 然而原子序数亦有负数,反氢记作-1H,反氦记作-2He。.

原子序数和放射性 · 原子序数和铜 · 查看更多 »

半衰期

半衰期(Half-life)是指某種特定物質的浓度经过某种反应降低到剩下初始时一半所消耗的時間,半衰期是研究反应动力学的一个容易测定的重要参数,数学上可以证明,只有一级反应的半衰期是恒定的数值,且知悉一个一级反应的半衰期便可以计算出该反应的所有动力学参数,所以人们通常只关心一级反应的半衰期。常见的一级反应有:放射性核素的衰变、一级化学反应、药物在体内的吸收和代谢等。.

半衰期和放射性 · 半衰期和铜 · 查看更多 »

同位素

同位素(Isotope)是某種特定化學元素之下的不同種類,同一種元素下的所有同位素都具有相同原子序數,質子數目相同,但中子數目卻不同。這些同位素在化學元素週期表中佔有同一個位置,因此得名。 例如氫元素中氘和氚,它們原子核中都有1個質子,但是它們的原子核中分別有0個中子、1個中子及2個中子,所以它們互為同位素。.

同位素和放射性 · 同位素和铜 · 查看更多 »

化學元素

化學元素指自然界中一百多种基本的金属和非金属物质,同一種化學元素是由相同的原子組成,也就是其原子中的每一核子具有同样数量的質子,用一般的化学方法不能使之分解,并且能构成一切物质。一些常見元素的例子有氫、氮和碳。 原子序數大於82的元素(即鉛之後的元素)沒有穩定的同位素,會進行放射衰變。另外,第43和第61種元素(即锝和鉕)沒有穩定的同位素,會進行衰變。可是,即使是原子序數大於94,沒有穩定原子核的元素,有些仍可能存在在自然界中,如鈾、釷、钚等天然放射性核素。 所有化學物質都包含元素,即任何物質都包含元素,隨著人工的核反應,會發現更多的新元素。 1923年,国际原子量委员会作出决定:化学元素是根据原子核电荷的多少对原子进行分类的一种方法,把核电荷数相同的一类原子称为一种元素。 2012年,總共有118種元素被發現,其中地球上有94種。.

化學元素和放射性 · 化學元素和铜 · 查看更多 »

电镀

電鍍(英文:Electroplating)是利用电解的原理將導电体鋪上一層金屬的方法。 除了導電體以外,電鍍亦可用於經過特殊處理的塑膠上。 電鍍的過程基本如下:.

放射性和电镀 · 电镀和铜 · 查看更多 »

質量數

質量數(mass number)也稱為原子質量數(atomic mass number)或核子數(nucleon number),符号為A,是指中性原子中,原子核內質子數目和中子數目的總和,質量數的數值都是整數。如氧-16中性原子的原子核內質子數和中子數皆為8,故其質量數為16。 有時會將質量數和原子序數(Z,質子數)分別標示在元素的左上角及左下角,如即為質量數為16,原子序數為8的氧原子,因為同一元素的原子序數不會改變,有時也會省略左下角的原子序數。 質子和中子都是重子,因此質量數和原子(或離子)的重子數B相等。化學元素的不同同位素會有相同的原子序數,但不同的質量數,例如和都是氧,但質量數分別為16和18。而一原子的質量數減去質子數都可以得到其中子數N:N.

放射性和質量數 · 質量數和铜 · 查看更多 »

锝(--)是一種化學元素,其原子序數是43,化學符號是Tc。其所有同位素都具有放射性,是原子序最小的非穩定元素。地球上現存的大部分鍀都是人工製造的,自然界中僅有極少量存在。在鈾礦中,鍀是一種自發裂變產物;在鉬礦石中,鉬經中子俘獲后可以生成鍀。鍀是一種銀灰色的金屬晶體,其化學性質介於錳和錸之間。 在鍀發現以前,德米特里·門捷列夫就已經預測了它的許多性質。在他的周期表中,門捷列夫把這種尚未發現的元素叫做“類錳”,符號為Em。1937年,鍀(準確的說是鍀-97)成為第一個大部分由人工製造的元素。它的英文名來自希腊語τεχνητός,意為“人造”。 鍀的短壽命同位素鍀-99m具有γ放射性,廣泛用於核醫學。鍀-99僅具有β放射性。商業上,鍀的長壽命同位素是反應堆中鈾-235裂變的副產物,可以從乏燃料中提取得到。鍀最長壽命的同位素是鍀-98(半衰期為420萬年)。1952年,有人在壽命超過十億年的紅巨星中發現了鍀-98,讓人們認識到恆星可以製造重元素。.

放射性和锝 · 铜和锝 · 查看更多 »

正电子发射

正电子发射,又称β+衰变,是一种粒子放射性衰变的方式,属于β衰变。在这种衰变反应中,一个质子转化成中子,同时释放出一个正电子和一个电中微子。.

放射性和正电子发射 · 正电子发射和铜 · 查看更多 »

放射性

放射性或輻射性是指元素從不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成穩定的元素而停止放射(衰变产物),這種現象稱為放射性。衰变时放出的能量称为衰变能量。原子序數在83(鉍)或以上的元素都具有放射性,但某些原子序數小于83的元素(如锝)也具有放射性。而有趣的是,從原子序84開始一直到鉳元素有以下特性:原子序是偶數的,半衰期都比相邻的长。这是由於原子序数为偶數的元素的原子核含有適當數量的質子和中子,能够形成有利的配置結構。〈即魔數〉 對單一原子來說,放射性衰变依照量子力學是隨機過程,無法預測特定一個原子是否會衰变。不過原子衰变的機率不會隨著原子存在的時間長短而改變。對大量的原子而言,可以用量測衰變常數計算衰變速率及半衰期。其半衰期沒有已知的時間上下限,範圍可以到55個數量級,短至幾乎瞬間,長至久於宇宙年齡。 有許多種不同的放射性衰变。衰变或是能量的減少都會使有某種原子核的原子(父放射核素)轉變為有另一種原子核的原子,或是其中子或質子的數量不同,稱為子體核素。在一些衰变中,父放射核素和子體核素是不同的化學元素,因此衰变後產生了新的元素,這稱為核嬗变。 最早發現的衰变是α衰變、β衰變、γ衰變。α衰變是原子核放出α粒子(氦原子核),是最常見釋放核子的衰變,不過原子核偶爾也會釋放質子,或者釋放其他特殊的核子(稱為)。β衰變是原子核釋放電子(或正子)及反微中子,會將質子轉變為中子(或是將中子轉變為質子) 。核子也可能捕獲軌道上的電子,使質子轉變為中子,這為電子捕獲,上述的衰变都屬於核嬗变。 相反的,也有一些核衰变不會產生新的元素,受激態原子核的能量以伽馬射線的方式釋出,稱為伽馬衰变,或是將激发态原子核将能量转移至轨道电子上,轨道电子再脱离原子,稱為。若是核子中有大量高度受激的中子,有時會以中子發射的方式釋放能量。另外一種核衰变是將原來的原子核變為二個或多個較小的原子核,稱為自發性的核分裂,出現在大量的不穩定核子自發性的衰变時,一般也會釋放伽馬射線、中子或是其他粒子。 著名的例子像是鈾和釷,但也包括在自然界中,半衰期長的同位素,例如钾-40。例如15種是半衰期短的同位素,像鐳及氡,是由衰變後的產物,也有因為而產生的,像碳-14就是由宇宙射線撞擊氮-14而產生。放射性同位素也可能是因為粒子加速器或核反應爐而人工合成,其中有650種的半衰期超過一小時,有數千種的半衰期更短。.

放射性和放射性 · 放射性和铜 · 查看更多 »

上面的列表回答下列问题

放射性和铜之间的比较

放射性有101个关系,而铜有218个。由于它们的共同之处9,杰卡德指数为2.82% = 9 / (101 + 218)。

参考

本文介绍放射性和铜之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »