之间擬柱體和楔體相似
擬柱體和楔體有(在联盟百科)6共同点: 多面体,三角形,平行,平行四边形,底面,梯形。
多面体
多面體(polyhedron)是指三維空間中由平面和直邊組成的幾何形體。英文 polyhedron 源於古希臘語 πολύεδρον,由poly-(詞根 πολύς,多)和 -edron(έδρα,基底、座、面)構成,即意為「多面體」。 然而,「由平面和直邊組成的有界體」的定義方式並不明確,對現代數學而言更是不合格。克羅埃西亞數學家 Grünbaum 曾評論道:“多面體理論的原罪可追溯至歐幾里得,還有之後的克卜勒、龐索、柯西……各個時期……數學家們都未能準確定義何謂『多面體』。”自此,數學家雖以特定說法對「多面體」訂定了嚴謹的定義,但任一種卻都無法完全兼容其他定義方式。.
三角形
三角形,又稱三邊形,是由三条线段顺次首尾相连,或不共線的三點兩兩連接,所组成的一个闭合的平面图形,是最基本和最少邊的多边形。 一般用大写英语字母A、B和C为三角形的顶点标号;用小写英语字母a、b和c表示边;用\alpha、\beta和\gamma給角標號,又或者以\angle ABC這樣的顶点标号表示。.
平行
平行是一个几何学术语。在平面几何中,永远不会相交的多条直线,或者多个平面彼此互相平行。在欧几里得几何中,由平行公设,一个平面上的直线外指定一个点,就能指定出一条与它平行的直线。在非欧几何中,根据空间曲率的不同,在一条直线外指定一个点可以作多条或零条与它平行的直线。 在三维空间或一般的欧几里得空间中,直线或平面的平行关系视乎其方向向量或法向量,但與二維平面一樣,在一条直线外面指定一个点也只能表示一条与它平行的直线,并且在一个平面外指定一个点也只能指定一個与它平行的平面。然而,在一个平面外指定一个点可以指定和它平行的直线是无数条(这些直线都在与它平行的唯一一个平面上)。.
平行四边形
两组对边分别平行的四边形称为平行四边形。平行四边形一般用图形名称加依次四个顶点名称来表示,如图平行四边形记为平行四边形ABCD。 平行四边形并不是梯形。.
底面
在幾何學中,底面是指一個立體圖形可供參照的平面,整個立體皆存在參照於該平面的性質,且可以決定整個幾何體的對稱性。例如,三角錐的底面是三角形,且其對稱性取決於底面三角形,每個截面皆與底面相似。 底面不一定會是多面體中的某一個面,例如雙五角錐和五面形,其底面為五邊形,但都不存在五邊形的面。.
梯形
梯形是有一组對邊平行的凸四邊形。梯形平行的兩條邊为底边,分別稱為上底和下底,其间的距離為高,不平行的两条边为腰。下底与腰的夹角为底角,上底与腰的夹角为顶角。 廣義中,至少有一组對邊平行即為梯形,因此平行四邊形是梯形;狹義中,有且僅有一组對邊平行者為梯形,因此平行四邊形並不是梯形。.
上面的列表回答下列问题
- 什么擬柱體和楔體的共同点。
- 什么是擬柱體和楔體之间的相似性
擬柱體和楔體之间的比较
擬柱體有20个关系,而楔體有13个。由于它们的共同之处6,杰卡德指数为18.18% = 6 / (20 + 13)。
参考
本文介绍擬柱體和楔體之间的关系。要访问该信息提取每篇文章,请访问: