摆线和漸伸線
快捷方式: 差异,相似,杰卡德相似系数,参考。
摆线和漸伸線之间的区别
摆线 vs. 漸伸線
在数学中,摆线(Cycloid)被定义为,一个圆沿一条直线运动时,圆边界上一定点所形成的轨迹。它是一般旋轮线的一种。摆线亦称圆滚线。 摆线也是最速降线问题和等时降落问题的解。. 漸伸線(involute)(或稱漸開線(evolvent))和漸屈線(evolute)是曲線的微分幾何上互為表裡的概念。若曲線A是曲線B的漸伸線,曲線B是曲線A的漸屈線。 在曲線上選一定點S。有一動點P由S出發沿曲線移動,選在P的切線上的Q,使得曲線長SP 和直線段長PQ 相同。漸伸線就是Q的軌跡。 若曲線B有參數方程r:\mathbb R\to\mathbb R^n,其中|r^\prime(s)|.
之间摆线和漸伸線相似
摆线和漸伸線有(在联盟百科)0共同点。
上面的列表回答下列问题
- 什么摆线和漸伸線的共同点。
- 什么是摆线和漸伸線之间的相似性
摆线和漸伸線之间的比较
摆线有16个关系,而漸伸線有12个。由于它们的共同之处0,杰卡德指数为0.00% = 0 / (16 + 12)。
参考
本文介绍摆线和漸伸線之间的关系。要访问该信息提取每篇文章,请访问: