我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

拓撲向量空間和有界集合

快捷方式: 差异相似杰卡德相似系数参考

拓撲向量空間和有界集合之间的区别

拓撲向量空間 vs. 有界集合

拓撲向量空間是泛函分析研究中的一個基本結構。顧名思義就是要研究具有拓撲結構的向量空間。 拓撲向量空間主要都是函數空間,在上面定義的拓撲結構就是函數列收歛的條件。 希爾伯特空間及巴拿赫空間是典型的例子。. 在数学分析和有关的数学领域中,一个集合被称为有界的,如果它在某種意义上有有限大小。反过来说,不是有界的集合就叫做无界。.

之间拓撲向量空間和有界集合相似

拓撲向量空間和有界集合有(在联盟百科)4共同点: 賦範向量空間范数欧几里得空间数学分析

賦範向量空間

在数学中,赋范向量空间是具有“长度”概念的向量空间。是通常的欧几里得空间 Rn 的推广。Rn中的长度被更抽象的范数替代。“长度”概念的特征是:.

拓撲向量空間和賦範向量空間 · 有界集合和賦範向量空間 · 查看更多 »

范数

數(norm),是具有“长度”概念的函數。在線性代數、泛函分析及相關的數學領域,是一個函數,其為向量空間內的所有向量賦予非零的正長度或大小。半範數反而可以為非零的向量賦予零長度。 舉一個簡單的例子,一個二維度的歐氏幾何空間\R^2就有歐氏範數。在這個向量空間的元素(譬如:(3,7))常常在笛卡兒座標系統被畫成一個從原點出發的箭號。每一個向量的歐氏範數就是箭號的長度。 擁有範數的向量空間就是賦範向量空間。同樣,擁有半範數的向量空間就是賦半範向量空間。.

拓撲向量空間和范数 · 有界集合和范数 · 查看更多 »

欧几里得空间

欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.

拓撲向量空間和欧几里得空间 · 有界集合和欧几里得空间 · 查看更多 »

数学分析

数学分析(mathematical analysis)区别于其他非数学类学生的高等数学内容,是分析学中最古老、最基本的分支,一般指以微积分学、无穷级数和解析函數等的一般理论为主要内容,并包括它们的理论基础(实数、函数、測度和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。出自《数学辞海(第一卷)》 数学分析研究的內容包括實數、複數、實函數及複變函數。数学分析是由微積分演進而來,在微积分发展至现代阶段中,从应用中的方法总结升华为一类综合性分析方法,且初等微積分中也包括許多數學分析的基礎概念及技巧,可以认为这些应用方法是高等微积分生成的前提。数学分析的方式和其幾何有關,不過只要任一數學空間有定義鄰域(拓扑空间)或是有針對兩物件距離的定義(度量空间),就可以用数学分析的方式進行分析。.

拓撲向量空間和数学分析 · 数学分析和有界集合 · 查看更多 »

上面的列表回答下列问题

拓撲向量空間和有界集合之间的比较

拓撲向量空間有32个关系,而有界集合有26个。由于它们的共同之处4,杰卡德指数为6.90% = 4 / (32 + 26)。

参考

本文介绍拓撲向量空間和有界集合之间的关系。要访问该信息提取每篇文章,请访问: