徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

拓扑空间和豪斯多夫空间

快捷方式: 差异相似杰卡德相似系数参考

拓扑空间和豪斯多夫空间之间的区别

拓扑空间 vs. 豪斯多夫空间

拓扑空间是一种数学结构,可以在上頭形式化地定義出如收敛、连通、连续等概念。拓扑空间在现代数学的各个分支都有应用,是一个居于中心地位的、统一性的概念。拓扑空间有独立研究的价值,研究拓扑空间的数学分支称为拓扑学。. 在拓扑学和相关的数学分支中,豪斯多夫空间、分离空间或T2空间是其中的点都“由邻域分离”的拓扑空间。在众多可施加在拓扑空间上的分离公理中,“豪斯多夫条件”是最常使用和讨论的。它蕴涵了序列、网和滤子的极限的唯一性。直观地讲,这个条件可用个双关语来形容:如果某空间中任两点可用开集合将彼此“豪斯多夫”开来,该空间就是“豪斯多夫”的。 豪斯多夫得名于拓扑学的创立者之一费利克斯·豪斯多夫。豪斯多夫最初的拓扑空间定义把豪斯多夫条件包括为公理。.

之间拓扑空间和豪斯多夫空间相似

拓扑空间和豪斯多夫空间有(在联盟百科)20共同点: 实数度量空间代数几何代数簇开集分离公理商空间积空间稠密集紧空间邻域T1空间满射数学扎里斯基拓扑拓扑学拓扑不可区分性拓扑空间拓扑群

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

实数和拓扑空间 · 实数和豪斯多夫空间 · 查看更多 »

度量空间

在数学中,度量空间是个具有距離函數的集合,該距離函數定義集合內所有元素間之距離。此一距離函數被稱為集合上的度量。 度量空间中最符合人们对于现实直观理解的為三维欧几里得空间。事实上,“度量”的概念即是欧几里得距离四个周知的性质之推广。欧几里得度量定义了两点间之距离为连接這兩點的直线段之长度。此外,亦存在其他的度量空間,如橢圓幾何與雙曲幾何,而在球體上以角度量測之距離亦為一度量。狭义相對論使用雙曲幾何的雙曲面模型,作為速度之度量空間。 度量空间还能導出开集與闭集之類的拓扑性质,这导致了对更抽象的拓扑空间之研究。.

度量空间和拓扑空间 · 度量空间和豪斯多夫空间 · 查看更多 »

代数几何

代数几何是数学的一个分支。 经典代数几何研究多项式方程的零点,而现代代数几何将抽象代数,尤其是交换代数,同几何学的语言和问题结合起来。 代数几何的基本研究对象为代数簇。代数簇是由空间坐标的若干代数方程的零点集。常见的例子有平面代数曲线,比如直线、圆、椭圆、抛物线、双曲线、三次曲线(非奇异情形称作椭圆曲线)、四次曲线(如双纽线,以及卵形线)、以及一般n次曲线。代数几何的基本问题涉及对代数簇的分类,比如考虑在双有理等价意义下的分类,即双有理几何,以及模空间问题,等等。 代数几何在现代数学占中心地位,与多复变函数论、微分几何、拓扑学和数论等不同领域均有交叉。始于对代数方程组的研究,代数几何延续解方程未竟之事;与其求出方程实在的解,代数几何尝试理解方程组的解的几何性质。代数几何的概念和技巧都催生了某些最深奥的数学的分支。 进入20世纪,代数几何的研究又衍生出几个分支:.

代数几何和拓扑空间 · 代数几何和豪斯多夫空间 · 查看更多 »

代数簇

代数簇,亦作代數多樣體,是代数几何学上多项式集合的公共零点解的集合。代数簇是经典(某种程度上也是现代)代数几何的中心研究对象。 術語簇(variety)取自拉丁语族中詞源(cognate of word)的概念,有基於“同源”而“變形”之意。 历史上,代数基本定理建立了代数和几何之间的一个联系,它表明在复数域上的单变量的多项式由它的根的集合决定,而根集合是内在的几何对象。在此基础上,希尔伯特零点定理提供了多项式环的理想和仿射空间子集的基本对应。利用零点定理和相关结果,我们能够用代数术语捕捉簇的几何概念,也能够用几何来承载环论中的问题。.

代数簇和拓扑空间 · 代数簇和豪斯多夫空间 · 查看更多 »

开集

開集是指不包含任何自己邊界點的集合。或者說,開集包含的任意一點的充分小的鄰域都包含在其自身中。 例如,实数线上的由不等式2规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式2\leq x \leq 5,或者2规定的区间由于包含其边界,因此不能称之为开集。 开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。(详细请参照拓扑空间).

开集和拓扑空间 · 开集和豪斯多夫空间 · 查看更多 »

分离公理

在拓扑学及相关的数学领域裡,通常对于所讨论的拓扑空间加有各种各样的限制条件,分离公理即是指之中的某些限制條件。这些分离公理有时候被叫做吉洪诺夫分离公理,得名于安德烈·尼古拉耶维奇·吉洪諾夫。部分分離公理以字母T開頭,是由德文单词“Trennung”而來,意義是分离。 分離公理之所以稱為公理,是因為以前定義拓撲空間時,有些人會將其也做為公理來定義,而得出較現在意思狹義的拓撲空間。但在拓撲空間的公理化完成後,那些都成了「各種」的拓撲空間。然而,「分離公理」這一詞就這樣固定了下來。.

分离公理和拓扑空间 · 分离公理和豪斯多夫空间 · 查看更多 »

商空间

在拓扑学及其相关数学领域,一个商空间(quotient space,也称为等化空间identification space)直观上说是将一个给定空间的一些点等同或“黏合在一起”;由一个等价关系确定哪些点是等同的。这是从给定空间构造新空间的常见方法。.

商空间和拓扑空间 · 商空间和豪斯多夫空间 · 查看更多 »

积空间

拓扑学和数学的相关领域中,积空间是指一族拓扑空间的笛卡儿积,并配备了一个称为积拓扑的自然的拓扑结构。.

拓扑空间和积空间 · 积空间和豪斯多夫空间 · 查看更多 »

稠密集

在拓扑学及数学的其它相关领域,给定拓扑空间X及其子集A,如果对于X中任一点x,x的任一邻域同A的交集不为空,则A称为在X中稠密。直观上,如果X中的任一点x可以被A中的点很好的逼近,则称A在X中稠密。 等价地说,A在X中稠密当且仅当X中唯一包含A的闭集是X自己。或者说,A的闭包是X,又或者A的补集的内部是空集。.

拓扑空间和稠密集 · 稠密集和豪斯多夫空间 · 查看更多 »

紧空间

在数学中,如果欧几里得空间Rn的子集是闭合的并且是有界的,那么称它是--的。例如,在R中,闭合单位区间是紧致的,但整数集合Z不是(它不是有界的),半开区间.

拓扑空间和紧空间 · 紧空间和豪斯多夫空间 · 查看更多 »

在几何学、拓扑学以及数学的相关分支中,一个空间中的点用于描述给定空间中一种特别的对象,在空间中有类似于体积、面积、长度或其他高维类似物。一个点是一个零维度对象。点作为最简单的几何概念,通常作为几何、物理、矢量图形和其他领域中的最基本的组成部分。.

拓扑空间和点 · 点和豪斯多夫空间 · 查看更多 »

邻域

在集合论中,邻域指以点 a 为中心的任何开区间,记作:U(a)。 在拓扑学和相关的数学领域中,邻域是拓扑空间中的基本概念。直觉上说,一个点的邻域是包含这个点的集合,並且該性質是外延的:你可以稍微“抖动”一下这个点而不离开这个集合。 这个概念密切关联于开集和内部的概念。.

拓扑空间和邻域 · 豪斯多夫空间和邻域 · 查看更多 »

T1空间

在拓扑学和相关的数学分支中,T1 空间和 R0 空间是特定种类的拓扑空间。T1 和 R0 性质是分离公理的个例。.

T1空间和拓扑空间 · T1空间和豪斯多夫空间 · 查看更多 »

满射

满射或蓋射(surjection、onto),或稱满射函数或映成函數,一个函数f:X\rightarrow Y为满射,則对于任意的陪域 Y 中的元素 y,在函数的定义域 X 中存在一點 x 使得 f(x).

拓扑空间和满射 · 满射和豪斯多夫空间 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

拓扑空间和数学 · 数学和豪斯多夫空间 · 查看更多 »

扎里斯基拓扑

在代数几何和交换代数中,扎里斯基拓扑是定義在代数簇上的拓扑。其由奥斯卡·扎里斯基首先提出,及後用作給出一般交换环的素理想集的拓撲結構,稱為環的谱。 有了扎里斯基拓扑,無論一個代數簇的基域是否一個拓撲域(即一個域,其上可定義一個拓撲,使得加法和乘法都是連續函數),都可應用拓扑学的工具到代数簇的研究上。这是概形论的基本思想,有了它才允许將多個仿射簇黏合,而成一個一般的代數簇,正如流形理论中,流形由多個坐标卡(實仿射空间的開集)黏合而成一樣。 將一個代數簇的代數子集定義為閉集,就得到該代數簇的扎里斯基拓扑。若該代數簇定義在复数上,則扎里斯基拓扑比通常的拓扑结构更粗糙,因为每一个代数集在通常的拓撲中也都是闭集。 扎里斯基拓撲在交換環的素理想集上的推廣可從希尔伯特零点定理得到,因為該定理說,代數閉域上的仿射簇的點,與該仿射簇的坐標環的极大理想一一對應。因此可如下定義一個交換環的極大理想集上的扎里斯基拓撲:若干極大理想的集合是閉集,當且僅當該些極大理想就是包含某一理想的所有極大理想。格罗滕迪克的概形論中還有另一個基本思想,就是不單考慮對應某個極大理想的點,還要考慮任意(不可約的)代數簇,即對應素理想的點。 所以交換環的素理想集(稱為「譜」)上的扎里斯基拓撲滿足:若干素理想的集合為閉集,當且僅當該些素理想就是包含某一理想的所有素理想。.

扎里斯基拓扑和拓扑空间 · 扎里斯基拓扑和豪斯多夫空间 · 查看更多 »

拓扑学

在數學裡,拓撲學(topology),或意譯為位相幾何學,是一門研究拓撲空間的學科,主要研究空間內,在連續變化(如拉伸或彎曲,但不包括撕開或黏合)下維持不變的性質。在拓撲學裡,重要的拓撲性質包括連通性與緊緻性。 拓撲學是由幾何學與集合論裡發展出來的學科,研究空間、維度與變換等概念。這些詞彙的來源可追溯至哥特佛萊德·萊布尼茲,他在17世紀提出「位置的幾何學」(geometria situs)和「位相分析」(analysis situs)的說法。莱昂哈德·歐拉的柯尼斯堡七橋問題與歐拉示性數被認為是該領域最初的定理。「拓撲學」一詞由利斯廷於19世紀提出,雖然直到20世紀初,拓撲空間的概念才開始發展起來。到了20世紀中葉,拓撲學已成為數學的一大分支。 拓撲學有許多子領域:.

拓扑学和拓扑空间 · 拓扑学和豪斯多夫空间 · 查看更多 »

拓扑不可区分性

在拓扑学中,拓扑空间X內的两点若有完全相同的鄰域,便稱這兩個點為「拓扑不可区分的」。亦即,設x及y為X內的兩點,A為由所有包含x的鄰域所組成的集合,且B為由所有包含y的鄰域所組成的集合,則x及y為「拓撲不可區分的」若且唯若A.

拓扑不可区分性和拓扑空间 · 拓扑不可区分性和豪斯多夫空间 · 查看更多 »

拓扑空间

拓扑空间是一种数学结构,可以在上頭形式化地定義出如收敛、连通、连续等概念。拓扑空间在现代数学的各个分支都有应用,是一个居于中心地位的、统一性的概念。拓扑空间有独立研究的价值,研究拓扑空间的数学分支称为拓扑学。.

拓扑空间和拓扑空间 · 拓扑空间和豪斯多夫空间 · 查看更多 »

拓扑群

在數學中,拓撲群是群 G 和與之一起的 G 上的拓撲,使得這個群的二元運算和這個群的取逆函數是連續的。拓撲群允許依據連續群作用來研究連續對稱的概念。.

拓扑空间和拓扑群 · 拓扑群和豪斯多夫空间 · 查看更多 »

上面的列表回答下列问题

拓扑空间和豪斯多夫空间之间的比较

拓扑空间有94个关系,而豪斯多夫空间有47个。由于它们的共同之处20,杰卡德指数为14.18% = 20 / (94 + 47)。

参考

本文介绍拓扑空间和豪斯多夫空间之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »