我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

拉普拉斯-龍格-冷次向量和水星

快捷方式: 差异相似杰卡德相似系数参考

拉普拉斯-龍格-冷次向量和水星之间的区别

拉普拉斯-龍格-冷次向量 vs. 水星

在經典力學裏,拉普拉斯-龍格-冷次向量(簡稱為LRL向量)主要是用來描述,當一個物體環繞著另外一個物體運動時,軌道的形狀與取向。典型的例子是行星的環繞著太陽公轉。在一個物理系統裏,假若兩個物體以萬有引力相互作用,則LRL向量必定是一個運動常數,不管在軌道的任何位置,計算出來的LRL向量都一樣;也就是說,LRL向量是一個保守量。更廣義地,在克卜勒問題裏,由於兩個物體以連心力相互作用,而連心力遵守平方反比定律,所以,LRL向量是一個保守量。 氫原子是由兩個帶電粒子構成的。這兩個帶電粒子以遵守庫侖定律的靜電力互相作用.靜電力是一個標準的平方反比連心力。所以,氫原子內部的微觀運動是一個克卜勒問題。在量子力學的發展初期,薛丁格還在思索他的薛丁格方程式的時候,沃爾夫岡·包立使用LRL向量,關鍵性地推導出氫原子的發射光譜。這結果給予物理學家很大的信心,量子力學理論是正確的。 在經典力學與量子力學裏,因為物理系統的某一種對稱性,會產生一個或多個對應的保守值。LRL向量也不例外。可是,它相對應的對稱性很特別;在數學裏,克卜勒問題等價於一個粒子自由地移動於四維空間的三維球面;所以,整個問題涉及四維空間的某種旋轉對稱。 拉普拉斯-龍格-冷次向量是因皮埃爾-西蒙·拉普拉斯,卡爾·龍格,與威爾漢·冷次而命名。它又稱為拉普拉斯向量,龍格-冷次向量,或冷次向量。有趣的是,LRL向量並不是這三位先生發現的!這向量曾經被重複地發現過好幾次。它等價於天體力學中無因次的離心率向量。發展至今,在物理學裏,有許多各種各樣的LRL向量的推廣定義;牽涉到狹義相對論,或電磁場,甚至於不同類型的連心力。. 水星(Mercurius),中國古稱辰星;到西漢時期,《史記‧天官書》作者天文學家司馬遷從實際觀測發現辰星呈灰色,與「五行」學說聯繫在一起,以黑色配水星,因此正式把它命名為水星。 水星是太陽系的八大行星中最小和最靠近太陽的行星,但有著八大行星中最大的離心率 ,軌道週期是87.969 地球日。從地球上看,它大约116天左右與地球會合一次,公转速度遠遠超過太阳系的其它星球。水星的快速運動使它在羅馬神話中被稱為墨丘利,是快速飛行的信使神。由于大氣層极为稀薄,无法有效保存热量,水星表面昼夜温差极大,为太阳系行星之最。白天时赤道地區温度可达430°C,夜间可降至-170°C。極區气温則終年維持在-170°C以下。水星的軸傾斜是太陽系所有行星中最小的(大約度),但它有最大的軌道偏心率。水星在遠日點的距離大約是在近日點的1.5倍。水星表面充滿了大大小小的坑穴(環形山),外觀看起來與月球相似,顯示它的地質在數十億年來都處於非活動狀態。 水星无四季变化。它也是唯一被太陽潮汐鎖定的行星。相對於恆星,它每自轉三圈的時間與它在軌道上繞行太陽兩圈的時間几乎完全相等。從太陽看水星,參照它的自轉與軌道上的公轉運動,是每兩個水星年才一個太陽日。因此,对一位在水星上的觀測者来说,一天相当于兩年。 因為水星的軌道位於地球的內側(金星也一樣),所以它只能在晨昏之際與白天出現在天空中,而不會在子夜前後出現。同時,也像金星和月球一樣,在它繞著軌道相對於地球,會呈現一系列完整的相位。雖然从地球上觀察,水星會是一顆很明亮的天體,但它比金星更接近太陽,因此比金星還難看見。 從地球看水星的亮度有很大的變化,視星等從-2.3至5.7等,但是它與太陽的分離角度最大只有28.3°。當它最亮時,从技術角度上讲應該很容易就能從地球上看見它,但由于其距离太阳过近,實際上並不容易找到。除非有日全食,否則在太陽光的照耀下通常是看不見水星的。在北半球,只能在凌晨或黃昏的曙暮光中看見水星。當大距出現在赤道以南的緯度時,在南半球的中緯度可以在完全黑暗的天空中看見水星。 水星軌道的近日點每世紀比牛頓力學的預測多出43角秒的進動,這種現象直到20世紀才從愛因斯坦的廣義相對論得到解釋。.

之间拉普拉斯-龍格-冷次向量和水星相似

拉普拉斯-龍格-冷次向量和水星有(在联盟百科)8共同点: 半長軸廣義相對論公转经典力学阿尔伯特·爱因斯坦離心率進動

半長軸

半長軸是幾何學中的名詞,用來描述橢圓和雙曲線的維度。与之对应的就是長軸,半長軸为長軸的一半,一般描述橢圓的最長的直徑。.

半長軸和拉普拉斯-龍格-冷次向量 · 半長軸和水星 · 查看更多 »

廣義相對論

广义相对论是現代物理中基于相对性原理利用几何语言描述的引力理论。该理论由阿尔伯特·爱因斯坦等人自1907年开始发展,最终在1915年基本完成。广义相对论将经典的牛顿万有引力定律與狭义相对论加以推廣。在广义相对论中,引力被描述为时空的一种几何属性(曲率),而时空的曲率则通过爱因斯坦场方程和处于其中的物质及辐射的能量與动量联系在一起。 从广义相对论得到的部分预言和经典物理中的对应预言非常不同,尤其是有关时间流易、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——广义相对论虽然并非当今描述引力的唯一理论,但却是能够与实验数据相符合的最简洁的理论。不过仍然有一些问题至今未能解决。最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。 爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用。比如它预言了某些大质量恒星终结后,会形成时空极度扭曲以至于所有物质(包括光)都无法逸出的区域,黑洞。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们可能观察到处于遥远位置的同一个天体形成的多个像。广义相对论还预言了引力波的存在。引力波已经由激光干涉引力波天文台在2015年9月直接观测到。此外,广义相对论还是现代宇宙学中的的理论基础。.

廣義相對論和拉普拉斯-龍格-冷次向量 · 廣義相對論和水星 · 查看更多 »

公转

公转(Orbital revolution),是一物體以另一物體為中心,沿一定軌道所作的循環運動;所沿著的軌道可以為圆、椭圆、双曲线或抛物线。在天文學上,一般用來形容行星、彗星等星体環繞恒星;衛星、人造卫星等環繞行星;小规模星系、星云、宇宙尘埃等環繞大规模星系;以及更大规模的天体间环绕的運動。 在不同的参照系中,公转在不同的视角下,会出现两种公转方向。一种为逆时针方向,一种为顺时针方向。如下面的图所示,橙色球绕着图中心的红色球做公转运动,左边的是逆时针方向,右边的是顺时针方向。.

公转和拉普拉斯-龍格-冷次向量 · 公转和水星 · 查看更多 »

经典力学

经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基本学科。在物理學裏,经典力学是最早被接受为力學的一个基本綱領。经典力学又分为静力学(描述静止物体)、运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。16世纪,伽利略·伽利莱就已采用科学实验和数学分析的方法研究力学。他为后来的科学家提供了许多豁然开朗的启示。艾萨克·牛顿则是最早使用数学语言描述力学定律的科学家。.

拉普拉斯-龍格-冷次向量和经典力学 · 水星和经典力学 · 查看更多 »

阿尔伯特·爱因斯坦

阿尔伯特·爱因斯坦,或譯亞伯特·爱因斯坦(Albert Einstein,),猶太裔理論物理學家,创立了現代物理學的兩大支柱之一的相对论,也是質能等價公式()的發現者。他在科學哲學領域頗具影響力。因為“對理論物理的貢獻,特別是發現了光電效應的原理”,他榮獲1921年諾貝爾物理學獎。這發現為量子理論的建立踏出了關鍵性的一步。 愛因斯坦在職業生涯早期就發覺經典力學與電磁場無法相互共存,因而發展出狹義相對論。他又發現,相對論原理可以延伸至重力場的建模。從研究出來的一些重力理論,他於1915年發表了廣義相對論。他持續研究統計力學與量子理論,導致他給出粒子論與對於分子運動的解釋。在1917年,愛因斯坦應用廣義相對論來建立大尺度結構宇宙的模型。 阿道夫·希特勒於1933年開始掌權成為德國總理之時,愛因斯坦正在走訪美國。由於愛因斯坦是猶太裔人,所以儘管身為普魯士科學院教授,亦沒有返回德國。1940年,他定居美國,隨後成為美國公民。在第二次世界大戰前夕,他在一封寫給當時美國總統富蘭克林·羅斯福的信裏署名,信內提到德國可能發展出一種新式且深具威力的炸彈,因此建議美國也盡早進行相關研究,美國因此開啟了曼哈頓計劃。愛因斯坦支持增強同盟國的武力,但譴責將當時新發現的核裂变用於武器用途的想法,後來愛因斯坦與英國哲學家伯特蘭·羅素共同簽署《羅素—愛因斯坦宣言》,強調核武器的危險性。 愛因斯坦總共發表了300多篇科學論文和150篇非科學作品。愛因斯坦被誉为是“現代物理学之父”及20世紀世界最重要科學家之一。他卓越和原創性的科學成就使得“愛因斯坦”一詞成為“天才”的同義詞。.

拉普拉斯-龍格-冷次向量和阿尔伯特·爱因斯坦 · 水星和阿尔伯特·爱因斯坦 · 查看更多 »

離心率

離心率又稱偏心率,是指圆锥曲线上的一点到平面内一定点的距离与到不过此点的一定直线的距离之比。其中此定点称为焦点,而此定直线称为准线。 设一圆锥曲线C由C: d(P,M).

拉普拉斯-龍格-冷次向量和離心率 · 水星和離心率 · 查看更多 »

進動

進動(precession)是自轉物體之自轉軸又繞著另一軸旋轉的現象,又可稱作旋進。在天文學上,又稱為「歲差現象」。 常見的例子為陀螺。當其自轉軸的軸線不再呈鉛直時,即自转轴与对称轴不重合不平行时,會發現自轉軸會沿著鉛直線作旋轉,此即「旋進」現象。另外的例子是地球的自轉。 對於量子物體如粒子,其帶有自旋特徵,常將之類比於陀螺自轉的例子。然而實際上自旋是一個內稟性質,並不是真正的自轉。粒子在標準的量子力學處理上是視為點粒子,無法說出一個點是怎樣自轉。若要將粒子視為帶質量球狀物體來計算,以電子來說,會發現球表面轉速超過光速,違反狹義相對論的說法。 自旋的進動現象主要出現在核磁共振與磁振造影上。其中的例子包括了穩定態自由旋進(進動)造影。 進動是轉動中的物體自轉軸的指向變化。在物理學中,有兩種類型的進動,自由力矩和誘導力矩,此處對後者的討論會比較詳細。在某些文章中,"進動"可能會提到地球經驗的歲差,這是進動在天文觀測上造成的效應,或是物體在軌道上的進動。.

拉普拉斯-龍格-冷次向量和進動 · 水星和進動 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

拉普拉斯-龍格-冷次向量和氢 · 氢和水星 · 查看更多 »

上面的列表回答下列问题

拉普拉斯-龍格-冷次向量和水星之间的比较

拉普拉斯-龍格-冷次向量有128个关系,而水星有177个。由于它们的共同之处8,杰卡德指数为2.62% = 8 / (128 + 177)。

参考

本文介绍拉普拉斯-龍格-冷次向量和水星之间的关系。要访问该信息提取每篇文章,请访问: