扎里斯基曲面和数学
快捷方式: 差异,相似,杰卡德相似系数,参考。
扎里斯基曲面和数学之间的区别
扎里斯基曲面 vs. 数学
在数学的一个分支 代数几何中,扎里斯基曲面(Zariski surface)是指 特征 p > 0的 域 上的一个曲面,使得存在从 射影平面 到该曲面的一个度数为p的优势不可分映射。 特别是,所有扎里斯基曲面都是 单有理 的。 1977年Piotr Blass用 奥斯卡·扎里斯基 的名字来命名了该曲面,因为扎里斯基在1958年使用这种曲面给出了特征p > 0的单有理曲面的例子,而这个曲面不是有理的。 (相比特征为0的情况下, 卡斯泰定理 意味着所有单有理曲面都是有理的。) 扎里斯基曲面 双有理 于 仿射空间 A3 中由 不可多项式 定义的曲面 经过长达43年的努力,奥斯卡·扎里斯基在1971年提出的下述问题得到解决:令 S 为一个几何亏格为0的扎里斯基曲面。 那么 S 一定是一个有理曲面吗?对于 p. 数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
之间扎里斯基曲面和数学相似
扎里斯基曲面和数学有(在联盟百科)2共同点: 域 (數學),代数几何。
在抽象代数中,域(Field)是一种可進行加、減、乘和除(除了除以零之外,「零」即加法單位元素)運算的代數結構。域的概念是数域以及四则运算的推广。 域是环的一种。域和一般的环的区别在于域要求它的元素(除零元素之外)可以进行除法运算,这等价于说每个非零的元素都要有乘法逆元。體中的運算关于乘法是可交换的。若乘法運算沒有要求可交換則稱為除環(division ring)或skew field。.
域 (數學)和扎里斯基曲面 · 域 (數學)和数学 · 查看更多 »
代数几何是数学的一个分支。 经典代数几何研究多项式方程的零点,而现代代数几何将抽象代数,尤其是交换代数,同几何学的语言和问题结合起来。 代数几何的基本研究对象为代数簇。代数簇是由空间坐标的若干代数方程的零点集。常见的例子有平面代数曲线,比如直线、圆、椭圆、抛物线、双曲线、三次曲线(非奇异情形称作椭圆曲线)、四次曲线(如双纽线,以及卵形线)、以及一般n次曲线。代数几何的基本问题涉及对代数簇的分类,比如考虑在双有理等价意义下的分类,即双有理几何,以及模空间问题,等等。 代数几何在现代数学占中心地位,与多复变函数论、微分几何、拓扑学和数论等不同领域均有交叉。始于对代数方程组的研究,代数几何延续解方程未竟之事;与其求出方程实在的解,代数几何尝试理解方程组的解的几何性质。代数几何的概念和技巧都催生了某些最深奥的数学的分支。 进入20世纪,代数几何的研究又衍生出几个分支:.
代数几何和扎里斯基曲面 · 代数几何和数学 · 查看更多 »
上面的列表回答下列问题
- 什么扎里斯基曲面和数学的共同点。
- 什么是扎里斯基曲面和数学之间的相似性
扎里斯基曲面和数学之间的比较
扎里斯基曲面有13个关系,而数学有219个。由于它们的共同之处2,杰卡德指数为0.86% = 2 / (13 + 219)。
参考
本文介绍扎里斯基曲面和数学之间的关系。要访问该信息提取每篇文章,请访问: