之间戈弗雷·哈罗德·哈代和数论相似
戈弗雷·哈罗德·哈代和数论有(在联盟百科)7共同点: 丟番圖逼近,哈代-李特爾伍德圓法,素数,華林問題,解析数论,黎曼ζ函數,愛德華·梅特蘭·賴特。
丟番圖逼近
丢番图分析是数论的一个分支。最经典的丢番图逼近主要用於有理数逼近实数,亦即实数的有理逼近相关问题。其中有理数一般用分数形式表达,且一律要求分子为整数,分母为正整数,通常要求是既约分数。 "丢番图逼近"的名称源于古希腊数学家丢番图。这是因为有理逼近可以归结为求不等式整数解的问题,而求方程整数解的问题一般称为丢番图方程(或不定方程),故而得名。事实上,丢番图逼近与不定方程的研究确有颇多相关。 丢番图逼近的首要问题是寻求实数的最佳(有理)丢番图逼近,简称最佳逼近。具体来说,对于一个实数 \alpha,希望找到一个"最优"的有理数 p/q 作为 \alpha 的近似,使在分母不超过 q 的所有有理数中,p/q 与 \alpha 的距离最小。这里的"距离"可以是欧氏距离,即两数之差的绝对值;也可以用 |q\alpha-p| 等方式度量。满足此类要求的有理数 p/q 称为实数 \alpha 的一个最佳逼近。关于如何寻找实数的最佳逼近及相关论题,已于18世纪随着连分数理论的发展得到基本解决。 其后,该领域的主要注意力转向对有理逼近的误差进行估计、度量,以给出尽可能精确的上下界(一般用分母的函数表示)。作为分母的函数, 这种上下界的阶与 \alpha 的性质密切相关。当 \alpha 分别为有理数、代数数、超越数时,其最佳逼近误差下界的阶是不同的。基于这种思想,刘维尔在1844年建立了有关代数数逼近的一个基本结论,并由此具体地构造出了一个超越数(参见刘维尔数),证明了它的超越性。这在人类历史上尚属首次。由此可见,丢番图逼近与数论的另一分支——超越数论紧密相关。 除了上述最经典的单个实数的有理逼近问题,该领域还包括多个实数的联立逼近,非齐次逼近,实数的代数数逼近,一致分布(均匀分布)等方面。甚至连p进数上的丢番图逼近也有颇多研究。.
哈代-李特爾伍德圓法
在數學裡,哈代-勒特伍德圓法是在解析數論中最常被使用的技術之一。其是以高德菲·哈羅德·哈代和約翰·恩瑟·李特爾伍德來命名的,他們是在一連討論華林問題的論文中發展了此一技術。這個觀念一開始的起源通常被歸功於哈代在1916年和1917年中和拉馬努金在整數分拆的漸進分析中之研究。這被許多其他的研究者們所使用,包括哈羅德·達芬波特和維諾格拉多夫,他們稍微地修改了其公式(由複分析移至指數和),但沒有改變大略的內容。上千篇論文使用著此一方法,且直到2005年,這個方法仍然被使用來產生新的成果。 問題中的圓一開始是在複數平面上的單位圓。假定問題一開始是一連串的複數 想要求得其中的一些可能的漸進類型 其中有一些啟發性的方法可以用來猜測F可能的類型,先寫下 ,一個冪級數生成函數。其中有些有趣的例子在於f的收斂半徑等於1的條件下,故將問題假裝已調整至承現出滿足此一條件。 經由此規劃之後,便可以直接由留數定理得出對每個整數 n ≥ 0, 其中這個積分是繞著圓心為0且半徑為0 \zeta\.
哈代-李特爾伍德圓法和戈弗雷·哈罗德·哈代 · 哈代-李特爾伍德圓法和数论 ·
素数
質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.
戈弗雷·哈罗德·哈代和素数 · 数论和素数 ·
華林問題
华林问题是数论中的问题之一。1770年,爱德华·华林猜想,对于每个非1的正整数k,皆存在正整数g(k),使得每个正整数都可以表示为至多g(k)个k次方数(即正整數的k次方)之和。.
解析数论
解析数论(analytic number theory),為數論中的分支,它使用由数学分析中發展出的方法,作为工具,来解决数论中的问题。它首次出現在數學家狄利克雷在1837年導入狄利克雷L函數,來証明狄利克雷定理。解析数论的成果中,較廣為人知的是在質數(例如質數定理及黎曼ζ函數)及(例如哥德巴赫猜想及華林問題)。.
黎曼ζ函數
黎曼ζ函數ζ(s)的定義如下: 設一複數s,其實數部份> 1而且: \sum_^\infin \frac 它亦可以用积分定义: 在区域上,此无穷级数收敛并为一全纯函数(其中Re表示--的实部,下同)。欧拉在1740考虑过s为正整数的情况,后来切比雪夫拓展到s>1。波恩哈德·黎曼认识到:ζ函数可以通过解析开拓来扩展到一个定义在复数域(s, s≠ 1)上的全纯函数ζ(s)。这也是黎曼猜想所研究的函数。 虽然黎曼的ζ函数被数学家认为主要和“最纯”的数学领域数论相关,它也出现在应用统计学(参看齊夫定律(Zipf's Law)和(Zipf-Mandelbrot Law))、物理,以及调音的数学理论中。.
愛德華·梅特蘭·賴特
愛德華·梅特蘭·賴特爵士(Sir Edward Maitland Wright,),和他在牛津大學的導師哈代合寫《數論介紹》(An Introduction to the Theory of Numbers)以著名的英國數學家。.
上面的列表回答下列问题
- 什么戈弗雷·哈罗德·哈代和数论的共同点。
- 什么是戈弗雷·哈罗德·哈代和数论之间的相似性
戈弗雷·哈罗德·哈代和数论之间的比较
戈弗雷·哈罗德·哈代有60个关系,而数论有74个。由于它们的共同之处7,杰卡德指数为5.22% = 7 / (60 + 74)。
参考
本文介绍戈弗雷·哈罗德·哈代和数论之间的关系。要访问该信息提取每篇文章,请访问: