徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

恒星和爱丁顿光度

快捷方式: 差异相似杰卡德相似系数参考

恒星和爱丁顿光度之间的区别

恒星 vs. 爱丁顿光度

恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。. 爱丁顿光度或者爱丁顿极限,是吸积天体所能达到的最大光度。天体在吸积周围介质的同时发出辐射,当吸积物质累积到一定程度,辐射压(光压)会阻止物质进一步下落。此时天体作用在一个粒子上向内的引力与其受到向外的辐射压力达到平衡。平衡的状态被称为流体静力平衡。当一个恒星超过爱丁顿光度,它将从它的外层发起非常强烈的辐射驱动的星风。由于大多数恒星都远低于爱丁顿光度,它们的星风多是由较不强烈的吸收线驱动。爱丁顿光度被激发来解释吸积黑洞的观测亮度,例如类星体。.

之间恒星和爱丁顿光度相似

恒星和爱丁顿光度有(在联盟百科)11共同点: 太阳中子星白矮星質子超新星黑洞輻射壓林軌跡星风流體靜力平衡新星

太阳

太陽或日是位於太陽系中心的恆星,它幾乎是熱電漿與磁場交織著的一個理想球體。其直徑大約是1,392,000(1.392)公里,相當於地球直徑的109倍;質量大約是2千克(地球的333,000倍),約佔太陽系總質量的99.86% ,同時也是27,173,913.04347826(約2697.3萬)倍的月球質量。 从化學組成来看,太陽質量的大約四分之三是氫,剩下的幾乎都是氦,包括氧、碳、氖、鐵和其他的重元素質量少於2% 。 太陽的恆星光譜分類為G型主序星(G2V)。雖然它以肉眼來看是白色的,但因為在可见光的頻譜中以黃綠色的部分最為強烈,從地球表面觀看時,大氣層的散射使天空成為藍色,所以它呈現黃色,因而被非正式地稱為“黃矮星” 。 光譜分類標示中的G2表示其表面溫度大約是5778K(5505°C),V则表示太陽像其他大多數的恆星一樣,是一顆主序星,它的能量來自於氫融合成氦的核融合反應。太陽的核心每秒鐘聚变6.2億噸的氫。太陽一度被天文學家認為是一顆微小平凡的恆星,但因為銀河系內大部分的恆星都是紅矮星,現在認為太陽比85%的恆星都要明亮。太陽的絕對星等是 +4.83,但是由于其非常靠近地球,因此从地球上看来,它是天空中最亮的天體,視星等達到−26.74。太陽高溫的日冕持續的向太空中拓展,創造的太陽風延伸到100天文單位遠的日球層頂。這個太陽風形成的“氣泡”稱為太陽圈,是太陽系中最大的連續結構。 太陽目前正在穿越銀河系內部邊緣獵戶臂的本地泡區中的本星際雲。在距離地球17光年的距離內有50顆最鄰近的恆星系(最接近的一顆是紅矮星,被稱為比鄰星,距太阳大約4.2光年),太陽的質量在這些恆星中排在第四。 太陽在距離銀河中心24,000至26,000光年的距離上繞著銀河公轉,從銀河北極鳥瞰,太陽沿順時針軌道運行,大約2.25億至2.5億年遶行一周。由於銀河系在宇宙微波背景輻射(CMB)中以550公里/秒的速度朝向長蛇座的方向運動,这两个速度合成之后,太陽相對於CMB的速度是370公里/秒,朝向巨爵座或獅子座的方向運動。 地球圍繞太陽公轉的軌道是橢圓形的,每年1月離太陽最近(稱為近日點),7月最遠(稱為遠日點),平均距離是1.496億公里(天文学上稱這個距離為1天文單位) 。以平均距離算,光從太陽到地球大約需要经过8分19秒。太陽光中的能量通过光合作用等方式支持着地球上所有生物的生长 ,也支配了地球的氣候和天氣。人类從史前時代就一直認為太陽對地球有巨大影響,有許多文化將太陽當成神来崇拜。人类對太陽的正確科學認識進展得很慢,直到19世紀初期,傑出的科學家才對太陽的物質組成和能量來源有了一點認識。直至今日,人类对太阳的理解一直在不断进展中,还有大量有关太陽活动机制方面的未解之謎等待着人们来破解。 現今,太陽自恆星育嬰室誕生以來已經45億歲了,而現有的燃料預計還可以燃燒50億年之久。.

太阳和恒星 · 太阳和爱丁顿光度 · 查看更多 »

中子星

中子星(neutron star),是恒星演化到末期,經由引力坍縮發生超新星爆炸之後,可能成為的少數終點之一。恆星在核心的氫、氦、碳等元素於核聚变反應中耗盡,当它们最终轉變成鐵元素時便無法从核聚变中获得能量。失去熱輻射壓力支撐的外圍物質受重力牽引會急速向核心墜落,有可能导致外壳的動能轉化為熱能向外爆發產生超新星爆炸,或者根据恒星质量的不同,恒星的内部区域被压缩成白矮星、中子星或黑洞。白矮星被压缩成中子星的過程中恒星遭受劇烈的壓縮使其組成物質中的電子併入質子轉化成中子,直徑大約只有十餘公里,但上面一立方厘米的物質便可重達十億噸,且旋轉速度極快。由於其磁軸和自轉軸並不重合,磁場旋轉時所產生的無線電波等各种辐射可能會以一明一滅的方式傳到地球,有如人眨眼,此時稱作脈衝星。 一顆典型的中子星質量介於太陽質量的1.35到2.1倍,半徑則在10至20公里之間(質量越大半徑收縮得越小),也就是太陽半徑的30,000至70,000分之一。因此,中子星的密度在每立方公分8×1013克至2×1015克間,此密度大約是原子核的密度。 緻密恆星的質量低於1.44倍太陽質量,則可能是白矮星,但质量大於奧本海默-沃爾可夫極限(3.2倍太陽質量)的恆星会继续發生引力坍縮,則無可避免的將產生黑洞。 由於中子星保留母恆星大部分的角動量,但半徑只是母恆星極微小的量,轉動慣量的減少導致轉速迅速的增加,產生非常高的自轉速率,周期從毫秒脈衝星的700分之一秒到30秒都有。中子星的高密度也使它有強大的表面重力,強度是地球的2×1011到3×1012倍。逃逸速度是將物體由重力場移動至無窮遠的距離所需要的速度,是測量重力的一項指標。一顆中子星的逃逸速度大約在10,000至150,000公里/秒之間,也就是可以達到光速的一半。換言之,物體落至中子星表面的速度也將達到150,000公里/秒。更具體的說明,如果一個普通體重(70公斤)的人遇到中子星,他撞擊到中子星表面的能量將相當於二億噸TNT當量的威力(四倍於全球最巨大的核彈大沙皇的威力)。.

中子星和恒星 · 中子星和爱丁顿光度 · 查看更多 »

白矮星

白矮星(white dwarf),也稱為簡併矮星,是由简并态物质構成的小恆星。它們的密度極高,一顆質量與太陽相當的白矮星體積只有地球一般的大小,微弱的光度則來自過去儲存的熱能。在太陽附近的區域內已知的恆星中大約有6%是白矮星。這種異常微弱的白矮星大約在1910年就被亨利·諾利斯·羅素、愛德華·皮克林和威廉·佛萊明等人注意到, p. 1白矮星的名字是威廉·魯伊登在1922年取的。 白矮星被認為是中、低質量恆星演化階段的最終產物,在我們所屬的星系內97%的恆星都屬於這一類。, §1.

恒星和白矮星 · 爱丁顿光度和白矮星 · 查看更多 »

質子

|magnetic_moment.

恒星和質子 · 爱丁顿光度和質子 · 查看更多 »

超新星

超新星是某些恒星在演化接近末期时经历的一种剧烈爆炸。这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可持续几周至几个月才会逐渐衰减变为不可见,而期间内一颗超新星所辐射的能量可以与太阳在其一生中辐射能量的总和相當。恒星通过爆炸会将其大部分甚至几乎所有物质以可高至十分之一光速的速度向外抛散,并向周围的星际物质辐射激波。这种激波会导致形成一个膨胀的气体和尘埃构成的壳状结构,这被称作超新星遗迹。超新星是星系引力波潛在的強大來源。初級宇宙射線有很大的比例來自超新星 。 超新星比新星更有活力。超新星的英文名稱為 supernova,nova在拉丁語中是“新”的意思,這表示它在天球上看上去是一顆新出現的亮星(其實原本即已存在,因亮度增加而被認為是新出現的);字首的super-是為了將超新星和一般的新星有所區分,也表示超新星具有更高的亮度。超新星這個名詞是沃爾特·巴德和弗裡茨·茲威基在1931年創造的。 超新星可以用兩種方式之一觸發:突然重新點燃核融合之火的簡併恆星,或是大質量恆星核心的重力塌陷。在第一種情況,一顆簡併的白矮星可以透過吸積從伴星那兒累積到足夠的質量,或是吸積或是合併,提高核心的溫度,點燃碳融合,並觸發失控的核融合,將恆星完全摧毀。在第二種情況,大質量恆星的核心可能遭受突然的引力坍縮,釋放重力位能,可以創建一次超新星爆炸。 最近一次觀測到銀河系的超新星是1604年的克卜勒之星(SN 1604);回顧性的分析已經發現兩個更新的殘骸 。對其它星系的觀測表明,在銀河系平均每世紀會出現三顆超新星,而且以現在的天文觀測設備,這些銀河超新星幾乎肯定會被觀測到 。它們作用的角色豐富了星際物質與高質量的化學元素。此外,來自超新星向外膨脹的激波可以觸發新恆星的形成。.

恒星和超新星 · 爱丁顿光度和超新星 · 查看更多 »

黑洞

黑洞(英文:black hole)是根據廣義相對論所推論、在宇宙空間中存在的一種質量相當大的天體和星體(並非是一般認知的「洞」概念)。黑洞是由質量足够大的恒星在核聚变反应的燃料耗盡後,發生引力坍缩而形成。黑洞的質量是如此之大,它产生的引力场是如此之强,以致于大量可測物质和辐射都无法逃逸,就連传播速度極快的光子也逃逸不出來。由于类似热力学上完全不反射光线的黑体,故名黑洞。在黑洞的周圍,是一個無法偵測的事件視界,標誌著無法返回的臨界點,而在黑洞中心有一個密度趨近於無限的奇異點。 當恆星內部氫元素全部核融合完畢時,因燃料用完無法抵抗自身重力而開始向內塌陷,但隨著壓力越來越高,內部的重元素會重新開始燃燒導致瞬間膨脹,這時恆星的體積將暴增至原先的數十倍至百倍,這便是紅巨星,質量更大的恆星則會發生超新星爆炸,無論是紅巨星或是超新星,都會將外部物質全部吹飛,直到連重元素也燒完時,重力又會使得恆星繼續向內塌陷,最後形成一顆與月球差不多大小的白矮星,質量稍大的恆星則會形成中子星,會放出規律的電磁波,至於質量更大的恆星則會繼續塌陷,強大的重力使周圍的空間產生扭曲,最後形成一個密度每立方公分約一億噸的天體:「黑洞」。直至目前為止,所發現質量最小的黑洞大約有3.8倍太陽質量。 黑洞無法直接觀測,但可以藉由間接方式得知其存在與質量,並且觀測到它對其他事物的影響。藉由物體被吸入之前因高熱而放出紫外線和X射線的「邊緣訊息」,可以獲取黑洞的存在的訊息。推測出黑洞的存在也可藉由間接觀測恆星或星際雲氣團繞行黑洞軌跡,來取得位置以及質量。 黑洞是天文物理史上,最引人注目的題材之一,在科幻小說、電影甚至報章媒體經常可見將黑洞作為素材。迄今,黑洞的存在已得到天文學界和物理學界的绝大多數研究者所認同,並且天文界不時提出於宇宙中觀測到已存在的黑洞。 根據英國物理學者史蒂芬·霍金於2014年1月26日的論據:愛因斯坦的重力方程式的兩種奇點的解,分別是黑洞跟白洞。不過理論上黑洞應該是一種「有進沒出」的天體,而白洞則只能出而不能進。然而黑洞卻有粒子的輻射,所以不再適合稱其名為黑洞,而應該改其名為「灰洞」,先前認為黑洞可以毀滅資訊情報的看法,是他「最大的失誤」。.

恒星和黑洞 · 爱丁顿光度和黑洞 · 查看更多 »

輻射壓

輻射壓(Radiation pressure)(亦稱光壓)是電磁輻射對所有暴露在其下的物體表面所施加的壓力。如果被吸收,壓力是流量密度除以光速;如果完全被反射,輻射壓將會加倍。例如,太陽輻射的能量在地球的流量密度是1370 W/m2,所以吸收狀態下的輻射壓是 4.6 µPa(參考氣候模型)。.

恒星和輻射壓 · 爱丁顿光度和輻射壓 · 查看更多 »

林軌跡

林軌跡(Hayashi track)是原恆星在赫羅圖上經歷原恆星雲之後達到趨近靜力學平衡的路徑。 1961年林忠四郎顯示有一個最小的有效溫度(相當於在赫羅圖的右側邊界)存在,這個臨界溫度大約是4000K,低於這個溫度靜力學平衡便不能維持。因此原恆星雲低於此溫度時必需經由收縮以提高溫度,直到達到臨界溫度。一旦達到臨界溫度,原恆星將繼續收縮至克赫時標,但是有效溫度不會繼續上升,而始終維持在林界限,因此林軌跡在赫羅圖上幾乎是垂直的。 恆星在林界限上是完全的對流體:這是因為他們是低溫和高度的不透明,因此輻射性的能量傳輸是毫無效率的,並且內部因而有大的溫度階梯。質量低於0.5太陽質量的恆星在由前主序星狀態進入主序星時會維持在林軌跡(意思是完全的對流體)的狀態,並在林軌跡的底部進入主序帶。質量高於0.5太陽質量的恆星,當林軌跡結束時,亨耶跡的狀態就會開始,當恆星內部的溫度上升到足夠高時,中央的不透明度便會降低,輻射傳輸能量的效率相對的被提升,會比對流更有效率:對一定質量的恆星而言,在林軌跡中光度最低的恆星是因為他依然完全以對流來傳輸能量。 在林軌跡的對流意謂著恆星將要進入主序帶與有著完全均勻的結構。.

恒星和林軌跡 · 林軌跡和爱丁顿光度 · 查看更多 »

星风

星風(Stellar Wind)是恒星表面发出的物质流,是恒星质量流失的一种途徑。星風在所有恆星中都普遍存在,但速度和强度有很大差别。 太阳发出的星風通常称为太阳风,速度大约为每秒200-300公里。从冕洞吹出的太阳风速度则要快一些,大约每秒700公里。太阳通过星風损失质量的速率约为每年10-14倍太阳质量,在一生中通过星風大约会损失掉0.01%的质量,因此星風对其恆星演化的影响可以忽略不计。红巨星星風的速度较低,大约为每秒20-60公里。但是由于其星風的密度很大,并且红巨星的表面积很大,由于星風造成的质量损失可以达到每年10-8-10-5倍太阳质量。恒星的质量越小,星風损失质量的速率越小,对于太阳这样的中小质量恒星的演化过程来说,星風造成的质量损失可以忽略不计。而对于大质量恒星,如沃尔夫-拉叶星,星風造成的质量损失率很大,在其一生中质量会发生明显的变化,星風对其演化过程具有很重要的影响。 一般认为,在太阳这样的质量较小、温度较低的恒星中,星風是由于温度很高的冕层发生压力扩张造成的。对于质量较大、较“热”的恒星,冕层的温度和恒星表面差不多,这时星風主要是由辐射压驱动的。.

恒星和星风 · 星风和爱丁顿光度 · 查看更多 »

流體靜力平衡

流體靜力平衡 (法文: Équilibre hydrostatique; 德文: Hydrostatisches Gleichgewicht; 英文:Hydrostatic equilibrium)也稱爲靜力學平衡、靜水壓平衡,是指當流體處於相對靜止,或匀速運動時的平衡狀態。比如地球大氣在重力和由壓力梯度形成的與前者方向相反壓強梯度力之間的平衡,使其不致被重力壓扁,也不致被壓強梯度力擴散到太空中。.

恒星和流體靜力平衡 · 流體靜力平衡和爱丁顿光度 · 查看更多 »

新星

新星是激变变星的一类,是由吸積在白矮星表面的氫造成劇烈的核子爆炸的現象。这类星通常原本都很暗,难以发现,爆发时突然增亮,被认为是新产生的恒星,因此而得名。新星按光度下降速度分为快新星(NA)、中速新星(NAB)、慢新星(NB)和甚慢新星(NC),爆发时亮度会增加几万、几十万甚至几百万倍,持续几星期或几年。但不能和Ia超新星或其它恆星的爆炸混淆,包括加州理工學院在2007年5月首度發現的發光紅新星。 目前在银河系中已发现超过200颗新星。.

恒星和新星 · 新星和爱丁顿光度 · 查看更多 »

上面的列表回答下列问题

恒星和爱丁顿光度之间的比较

恒星有307个关系,而爱丁顿光度有20个。由于它们的共同之处11,杰卡德指数为3.36% = 11 / (307 + 20)。

参考

本文介绍恒星和爱丁顿光度之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »