我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

快子和超光速

快捷方式: 差异相似杰卡德相似系数参考

快子和超光速之间的区别

快子 vs. 超光速

--(tachyon)也称为--、速子,是一种理论上预测的超光速次原子粒子。这种由相对论衍生出的假想粒子,总是以超过光速的速度在运动。快子与一般物质(相应称为慢子(tardyon))的相互作用可能不明显,所以即使其存在也不一定能侦测得到。在狭义相对论中,快子具有类空的四维动量和虚的原时,并被限定在能量-动量图中的类空区间部分。因此,它无法降低速度至亚光速状态。. 超光速(Faster-Than-Light, FTL或稱Superluminal)是一種速度比光速還快的概念,源自於相對論中對於定域物體不可能超過真空中光速的推論限制,光速成為許多場合下速率的上限值。在此之前的牛頓力學並未對超光速的速度作出限制。而在相对论中,运动速度和物体的其它性质,如质量甚至它所在参考系的时间流易等,密切相关,速度低于(真空中)光速的物体如果要加速达到光速,其质量会增长到无穷大因而需要无穷大的能量,而且它所感受到的时间流甚至会停止(如果超过光速则可能会出现“时间倒流”),所以理论上来说达到或超过光速是不可能的(至于光子,那是因为它在真空中永远处于光速c,而不是从低于光速增加到光速)。但也因此使得物理学家(以及普通大众)对于一些疑似超光速的物理现象特别感兴趣。 相對論出現後,超光速的意义出現在兩個領域,一個是物理上的(包括理論物理和實驗物理)以及天文學觀測方面,另一個是科幻方面,將相關條目條列如下:.

之间快子和超光速相似

快子和超光速有(在联盟百科)7共同点: 契忍可夫輻射廣義相對論光速狭义相对论相对论速度虫洞

契忍可夫輻射

契伦科夫辐射(Cherenkov radiation)是介質中運動的电荷速度超過該介質中光速時發出的一種以短波長為主的電磁輻射,其特徵是藍色輝光。這種輻射是1934年由苏联物理學家帕维尔·阿列克谢耶维奇·切连科夫發現的,因此以他的名字命名。1937年另兩名苏联物理學家伊利亞·弗蘭克和伊戈爾·塔姆成功地解釋了契忍可夫辐射的成因,三人因此共同獲得1958年的諾貝爾物理學獎。.

契忍可夫輻射和快子 · 契忍可夫輻射和超光速 · 查看更多 »

廣義相對論

广义相对论是現代物理中基于相对性原理利用几何语言描述的引力理论。该理论由阿尔伯特·爱因斯坦等人自1907年开始发展,最终在1915年基本完成。广义相对论将经典的牛顿万有引力定律與狭义相对论加以推廣。在广义相对论中,引力被描述为时空的一种几何属性(曲率),而时空的曲率则通过爱因斯坦场方程和处于其中的物质及辐射的能量與动量联系在一起。 从广义相对论得到的部分预言和经典物理中的对应预言非常不同,尤其是有关时间流易、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——广义相对论虽然并非当今描述引力的唯一理论,但却是能够与实验数据相符合的最简洁的理论。不过仍然有一些问题至今未能解决。最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。 爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用。比如它预言了某些大质量恒星终结后,会形成时空极度扭曲以至于所有物质(包括光)都无法逸出的区域,黑洞。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们可能观察到处于遥远位置的同一个天体形成的多个像。广义相对论还预言了引力波的存在。引力波已经由激光干涉引力波天文台在2015年9月直接观测到。此外,广义相对论还是现代宇宙学中的的理论基础。.

廣義相對論和快子 · 廣義相對論和超光速 · 查看更多 »

光速

光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:.

光速和快子 · 光速和超光速 · 查看更多 »

狭义相对论

-- 狭义相对论(英文:Special relativity)是由爱因斯坦、洛仑兹和庞加莱等人创立的,應用在惯性参考系下的时空理论,是对牛顿时空观的拓展和修正。爱因斯坦在1905年完成的《論動體的電動力學》論文中提出了狭义相对论Albert Einstein (1905) "", Annalen der Physik 17: 891; 英文翻譯為George Barker Jeffery和 Wilfrid Perrett翻譯的(1923); 另一版英文翻譯為Megh Nad Saha翻譯的On the Electrodynamics of Moving Bodies(1920).

快子和狭义相对论 · 狭义相对论和超光速 · 查看更多 »

相对论

对论(Theory of relativity)是关于时空和引力的理论,主要由愛因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非古典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。.

快子和相对论 · 相对论和超光速 · 查看更多 »

速度

速度(Vēlōcitās,Vitesse,Velocità,Geschwindigkeit,Velocity)是描述物体运动快慢和方向的物理量。物体在一段时间\Delta t内的平均速度\bar是它在这段时间里的位移\Delta \boldsymbol和时间间隔之比: 物体在某一时刻的瞬时速度\boldsymbol则是定義為位置矢量\boldsymbol 隨時間t的變化率: 物理学中提到物体的速度通常是指其瞬时速度。速度在国际单位制中的单位是米每秒,国际符号是m/s,中文符号是米/秒。相对论框架中,物体的速度上限是光速。 日常生活中,速度和速率幾乎是同義的。然而在物理學中,速度和速率是两个不同的概念。速度是矢量,具有大小和方向;速率則純粹指物體運動的快慢,是标量,没有方向。举例来说,假如一辆汽车以60公里每小时的速率朝正北方行驶,那么它的速度是一个大小等于60公里每小时、方向指向正北的矢量。物体的瞬时速率等于瞬时速度的大小,而平均速率则不一定等于平均速度的大小。.

快子和速度 · 超光速和速度 · 查看更多 »

虫洞

蟲洞(wormhole),又稱愛因斯坦-羅森橋(Einstein—Rosen bridge),是宇宙中可能存在的连接两个不同时空的狭窄隧道。蟲洞是1916年奥地利物理学家路德维希·弗莱姆首次提出的概念,1930年代由爱因斯坦及納森·羅森在研究引力场方程时假设黑洞与白洞透过虫洞连接,认为透过虫洞可以做瞬时间的空间转移或者做时间旅行。迄今为止,科学家们还没有观察到虫洞存在的证据,一般认为这是由于很难和黑洞相区别。 為了與其他種類的蟲洞進行區分,例如量子態的量子虫洞及弦論上的虫洞,一般通俗所稱之「虫洞」應被稱為「時空洞」,量子態的量子虫洞一般被稱為「微型虫洞」,兩者有很大的區分。 黑洞有一個特性,就是會在另一邊得到所謂的「鏡射宇宙」。愛因斯坦並不重視這個解,因為我們根本不可能通行。於是連接兩個宇宙的「愛因斯坦—羅森橋」被認為只是個數學伎倆。 但是,在1963年時,紐西蘭的數學家羅伊·克爾的研究發現,假設任何崩潰的恆星都會旋轉,則形成黑洞時,將會成為動態黑洞;史瓦西的靜態黑洞並不是最佳的物理解法。然而,實際上恆星會變成扁平的結構,不會形成奇點。也就是說:重力場並非無限大。這使得我們得到了一個驚人的結論:如果我們將物體或太空船沿著旋轉黑洞的旋轉軸心發射進入,原則上,它可能可以熬過中心的重力場,並進入鏡射宇宙。如此一來,愛因斯坦—羅森橋就如同連接時空兩個區域的通道,也就是「蟲洞」。 理论上,虫洞是连结白洞和黑洞的多维空间隧道,是无处不在,但转瞬即逝的。不过有人假想一种奇异物质可以使虫洞保持张开。也有人假设如果存在一种叫做幻影物质(Phantom matter)的奇异物质的话,因为其同时具有负能量和负质量,因此能创造排斥效应以防止虫洞关闭。这种奇异物质会使光发生偏转,成为发现虫洞的訊号。但是这些理论存在过多未经测试的假设,很难令人信服。.

快子和虫洞 · 虫洞和超光速 · 查看更多 »

上面的列表回答下列问题

快子和超光速之间的比较

快子有47个关系,而超光速有50个。由于它们的共同之处7,杰卡德指数为7.22% = 7 / (47 + 50)。

参考

本文介绍快子和超光速之间的关系。要访问该信息提取每篇文章,请访问: