我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

微积分学和经典力学

快捷方式: 差异相似杰卡德相似系数参考

微积分学和经典力学之间的区别

微积分学 vs. 经典力学

微積分學(Calculus,拉丁语意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的科學,正如:幾何學是研究形狀的科學、代數學是研究代數運算和解方程的科學一樣。微積分學又稱為“初等數學分析”。 微積分學在科學、經濟學、商業管理學和工業工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和解析幾何學的基礎上建立起来,主要包括微分學、積分學。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演绎。積分學,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是現代數學的主要分支之一。. 经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基本学科。在物理學裏,经典力学是最早被接受为力學的一个基本綱領。经典力学又分为静力学(描述静止物体)、运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。16世纪,伽利略·伽利莱就已采用科学实验和数学分析的方法研究力学。他为后来的科学家提供了许多豁然开朗的启示。艾萨克·牛顿则是最早使用数学语言描述力学定律的科学家。.

之间微积分学和经典力学相似

微积分学和经典力学有(在联盟百科)24共同点: 加速度动量向量分析导数廣義相對論位移微分几何微分方程微积分学克里斯蒂安·惠更斯积分约瑟夫·拉格朗日电磁学物理学牛頓第二運動定律質心质量运动学阿尔伯特·爱因斯坦自然哲学的数学原理艾萨克·牛顿速度泰勒级数数学分析

加速度

加速度是物理学中的一个物理量,是一个矢量,主要应用于经典物理当中,一般用字母\mathbf表示,在国际单位制中的单位为米每二次方秒(\mathrm)。加速度是速度矢量對于时间的变化率,描述速度的方向和大小变化的快慢。 在经典力学中,牛顿第二定律说明了力和加速度成正比,這定律又稱為「加速度定律」。假設施加於物體的淨外力為零,則加速度為零,速度為常數,由於動量是質量與速度的乘積,所以動量守恆。在電動力學裏,呈加速度運動的帶電粒子會發射电磁辐射。.

加速度和微积分学 · 加速度和经典力学 · 查看更多 »

动量

在古典力学裏,动量(momentum)是物体的质量和速度的乘積。例如,一輛快速移動的重型卡車擁有很大的動量。若要使這重型卡車從零速度加速到移動速度,需要使到很大的作用力;若要使重型卡車從移動速度減速到零速度也需要使到很大的作用力。假若卡車能夠輕一點或移動速度能夠慢一點,則它的動量也會小一點。 动量在国际单位制中的单位为kg m s^。有關动量的更精确的量度的内容,请参见本页的动量的现代定义部分。 一般而言,一个物体的动量指的是这个物体在它运动方向上保持运动的趋势。动量实际上是牛顿第一定律的一个推论。 动量是个矢量。 动量是一个守恒量,这表示为在一个封闭系统内动量的总和不可改变。在经典力学中,动量守恒暗含在牛顿定律中,但在狭义相对论中依然成立,(广义)动量在电动力学、量子力学、量子场论、广义相对论中也成立。 勒内·笛卡儿认为宇宙中总的“运动的量”是保持守恒的,这里所说的“运动的量”被理解为“物体大小和速度的乘积”——但这不宜被解读为现代动量定律的表达方式,因为笛卡尔并没有把“质量”这个概念与物体“重量”和“大小”之间的关系区分开来,更重要的是他认为速率(标量)而不是速度(向量)是守恒的。因此对于笛卡尔来说:一个移动的物体从另一个表面弹回来的时候,该物体的方向发生了改变但速率没有发生改变,运动的量应该没有发生改变。.

动量和微积分学 · 动量和经典力学 · 查看更多 »

向量分析

向量分析(或向量微積分)是數學的分支,关注向量場的微分和积分,主要在3维欧几里得空间 \mathbb^3 中。「向量分析」有时用作多元微积分的代名词,其中包括向量分析,以及偏微分和多重积分等更广泛的问题。向量分析在微分几何与偏微分方程的研究中起着重要作用。它被广泛应用于物理和工程中,特别是在描述电磁场、引力場和流体流动的时候。 向量分析从四元數分析发展而来,由约西亚·吉布斯和奧利弗·黑維塞於19世纪末提出,大多数符号和术语由吉布斯和黑維塞在他们1901年的书《向量分析》中提出。向量演算的常规形式中使用外积,不能推广到更高维度,而另一种的方法,它利用可以推广的外积,下文将会讨论。.

向量分析和微积分学 · 向量分析和经典力学 · 查看更多 »

导数

导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.

导数和微积分学 · 导数和经典力学 · 查看更多 »

廣義相對論

广义相对论是現代物理中基于相对性原理利用几何语言描述的引力理论。该理论由阿尔伯特·爱因斯坦等人自1907年开始发展,最终在1915年基本完成。广义相对论将经典的牛顿万有引力定律與狭义相对论加以推廣。在广义相对论中,引力被描述为时空的一种几何属性(曲率),而时空的曲率则通过爱因斯坦场方程和处于其中的物质及辐射的能量與动量联系在一起。 从广义相对论得到的部分预言和经典物理中的对应预言非常不同,尤其是有关时间流易、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——广义相对论虽然并非当今描述引力的唯一理论,但却是能够与实验数据相符合的最简洁的理论。不过仍然有一些问题至今未能解决。最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。 爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用。比如它预言了某些大质量恒星终结后,会形成时空极度扭曲以至于所有物质(包括光)都无法逸出的区域,黑洞。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们可能观察到处于遥远位置的同一个天体形成的多个像。广义相对论还预言了引力波的存在。引力波已经由激光干涉引力波天文台在2015年9月直接观测到。此外,广义相对论还是现代宇宙学中的的理论基础。.

廣義相對論和微积分学 · 廣義相對論和经典力学 · 查看更多 »

位移

在物理學裏,位移是位置的改變。假設從舊位置\mathbf\,\!改變到新位置\mathbf\,\!,則位移是\Delta\mathbf.

位移和微积分学 · 位移和经典力学 · 查看更多 »

微分几何

微分幾何研究微分流形的幾何性質,是現代數學中一主流;是廣義相對論的基礎,與拓撲學、代數幾何及理論物理關係密切。 古典微分几何起源于微积分,主要内容为曲线论和曲面论。歐拉、蒙日和高斯被公认为古典微分几何的奠基人。近代微分几何的创始人是黎曼,他在1854年创立了黎曼几何(实际上黎曼提出的是芬斯勒几何),这成为近代微分几何的主要内容,并在相对论有极为重要的作用。埃利·嘉当和陈省身等人曾在微分几何领域做出极为杰出的贡献。.

微分几何和微积分学 · 微分几何和经典力学 · 查看更多 »

微分方程

微分方程(Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 微分方程的应用十分广泛,可以解决许多与导数有关的问题 。物理中许多涉及变力的运动学、动力学问题,如空气的阻力為速度函數的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。 数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。.

微分方程和微积分学 · 微分方程和经典力学 · 查看更多 »

微积分学

微積分學(Calculus,拉丁语意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的科學,正如:幾何學是研究形狀的科學、代數學是研究代數運算和解方程的科學一樣。微積分學又稱為“初等數學分析”。 微積分學在科學、經濟學、商業管理學和工業工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和解析幾何學的基礎上建立起来,主要包括微分學、積分學。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演绎。積分學,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是現代數學的主要分支之一。.

微积分学和微积分学 · 微积分学和经典力学 · 查看更多 »

克里斯蒂安·惠更斯

克里斯蒂安·惠更斯(Christiaan Huygens,),荷兰物理学家、天文学家和数学家,土卫六的发现者。他还发现了猎户座大星云和土星光环。.

克里斯蒂安·惠更斯和微积分学 · 克里斯蒂安·惠更斯和经典力学 · 查看更多 »

积分

积分是微积分学与数学分析裡的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数 f(x), f(x)在一个实数区间 上的定积分 可以理解为在 \textstyle Oxy坐标平面上,由曲线 (x,f(x))、直线x.

微积分学和积分 · 积分和经典力学 · 查看更多 »

约瑟夫·拉格朗日

约瑟夫·拉格朗日伯爵(Joseph Lagrange,),法国籍意大利裔数学家和天文学家。拉格朗日曾为普鲁士的腓特烈大帝在柏林工作了20年,被腓特烈大帝称做「欧洲最伟大的数学家」,后受法国国王路易十六的邀请定居巴黎直至去世。拉格朗日一生才华横溢,在数学、物理和天文等领域做出了很多重大的贡献。他的成就包括著名的拉格朗日中值定理,创立了拉格朗日力学等等。 拉格朗日是18世纪一位十分重要的科学家,在数学、力学和天文学三个学科中都有历史性的重大贡献,但他主要是数学家。他最突出的贡献是在把数学分析的基础脱离几何与力学方面起了决定性的作用,使数学的独立性更为清楚,而不仅是其他学科的工具。同时在使天文学力学化、力学分析化上也起了历史性作用,促使力学和天文学(天体力学)更深入发展。在他的时代,分析学等分支刚刚起步,欠缺严密性和标准形式,但这不足以妨碍他取得大量的成果。.

微积分学和约瑟夫·拉格朗日 · 约瑟夫·拉格朗日和经典力学 · 查看更多 »

电磁学

电磁学(英語:electromagnetism)是研究电磁力(電荷粒子之间的一种物理性相互作用) 的物理学的一个分支。电磁力通常表现为电磁场,如電場、磁場和光。电磁力是自然界中四种基本相互作用之一。其它三种基本相互作用是强相互作用、弱相互作用、引力。 電學與磁學領域密切相關。電磁學可以廣義地包含電學和磁學,但狹義來說是探討電與磁彼此之間相互關係的一門學科。 英文单词electromagnetism是两个希腊语词汇ἢλεκτρον(ēlektron,“琥珀”)和μαγνήτης(magnetic源自"magnítis líthos"(μαγνήτης λίθος),意思是“镁石”,一种铁矿)的合成词。研究电磁现象的科学是用电磁力定义的,有时称作洛伦兹力,是既含有電也含有磁的现象。 电磁力在决定日常生活中大多数物体的内部性质中发挥着主要作用。常见物体的电磁力表现在物体中单个分子之间的分子间作用力的结果中。电子被电磁波力学束缚在原子核周围形成原子,而原子是分子的构成单位。相邻原子的电子之间的相互作用产生化學过程,是由电子间的电磁力与动量之间的相互作用决定的。 电磁场有很多种数学描述。在经典电磁学中,电场用欧姆定律中的電勢与电流描述,磁場与电磁感应和磁化强度相关,而馬克士威方程組描述了由电场和磁场自身以及电荷和电流引起的电场和磁场的产生和交替。 电磁学理论意义,特别是基于“媒介”中的传播的性质(磁导率和电容率)确立的光速,推动了1905年阿尔伯特·爱因斯坦的狭义相对论的发展。 虽然电磁力被认为是四大基本作用力之一,在高能量中弱力和电磁力是统一的。在宇宙的历史中的夸克時期,电弱力分割成电磁力和弱力。.

微积分学和电磁学 · 电磁学和经典力学 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

微积分学和物理学 · 物理学和经典力学 · 查看更多 »

牛頓第二運動定律

牛頓第二運動定律(Newton's second law of motion)闡明,物體的加速度與所受的凈力成正比,與質量成反比,物體的加速度與凈力同方向。 牛頓第二定律亦可以表述為「物体的动量对时间的变化率和所受外力成正比」。即动量对时间的一阶导数等于外力。.

微积分学和牛頓第二運動定律 · 牛頓第二運動定律和经典力学 · 查看更多 »

質心

質心為多質點系統的質量中心。若對該點施力,系統會沿著力的方向運動、不會旋轉。質點位置對質量加權取平均值,可得質心位置。以質心的概念計算力學通常比較簡單。質心對應的英文有 center of mass 與 barycenter(或 barycentre,源自古希臘的 βαρύς heavy + κέντρον centre)。後者指兩個或多個物體互繞物體的質量中心。 Barycenter 在天文學和天文物理上是很重要的一個觀念。從一個物體的質心轉移一個距離至彼此的質心,可以簡化成二體問題來進行計算。在兩個天體當中,有一個比另一個大許多的情況下(在相對封閉的環境),質心通常會位於質量較大的天體之內。因而較小的天體會在軌道上繞著共同的質心運動,而較大的僅僅只會略微"抖動"。地月系統就是這樣的狀況,倆者的質心距離地球的中心4,671公里,而地球的半徑是6,378公里。當兩個天體的質量差異不大時,質心通常會介於兩者之間,而這兩個天體會呈現互繞的現象。冥王星和它的衛星夏戎,還有許多雙小行星和聯星,都是這種情況的例子。木星和太陽的質量相差雖然超過1,000倍,但因為它們之間的距離較大,也是這一類型的例子。 在天文學,質心座標是非轉動座標,其原點是兩個或多個天體的質心所在。國際天球參考系統是質心座標之一,它的原點是太陽系的質心所在之處。 在幾何學,質心不等同於重心,是二維形狀的幾何中心。.

微积分学和質心 · 经典力学和質心 · 查看更多 »

质量

在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.

微积分学和质量 · 经典力学和质量 · 查看更多 »

运动学

运动学(kinematics)是力学的一门分支,专门描述物体的運動,即物体在空间中的位置随时间的演进而作的改变,完全不考慮作用力或质量等等影响運動的因素。運動学与kinetics、動力學不同。力動學专门研究造成运动或影响运动的各种因素。動力學綜合運動學與力動學在一起,研究力學系統由於力的作用隨著時間演進而造成的運動。 任何一个物体,像是车子、火箭、星球等等,不论其尺寸大小,假若能够忽略其内部的相对运动,假若其内部的每一部份都是朝相同的方向、以相同的速度移动,那麼,可以简易地将此物体视为質點,将此物体的质心的位置当作質點的位置。在运动学裏,这种質點运动,不论是直線运动或是曲線运动,都是最基本的研究对象。 假若不能忽略物体内部的相对运动,则当解析其运动时,必须先将物体理想化为刚体,即一群彼此之间距离不变的質點。涉及刚体的问题比较困难。刚体可能会进行平移运动、旋转运动或两者的综合。更困难的案例是多刚体系统的運動。在這系统内,几个刚体由mechanical linkage连结在一起。運動學分析某連桿裝置的可能運動範圍,或反過來,設計滿足預定運動範圍的連桿裝置。起重機或引擎活塞系統都是簡單的運動系統。起重機是一種open kinematic chain。活塞系統是四連桿組的一部分。.

微积分学和运动学 · 经典力学和运动学 · 查看更多 »

阿尔伯特·爱因斯坦

阿尔伯特·爱因斯坦,或譯亞伯特·爱因斯坦(Albert Einstein,),猶太裔理論物理學家,创立了現代物理學的兩大支柱之一的相对论,也是質能等價公式()的發現者。他在科學哲學領域頗具影響力。因為“對理論物理的貢獻,特別是發現了光電效應的原理”,他榮獲1921年諾貝爾物理學獎。這發現為量子理論的建立踏出了關鍵性的一步。 愛因斯坦在職業生涯早期就發覺經典力學與電磁場無法相互共存,因而發展出狹義相對論。他又發現,相對論原理可以延伸至重力場的建模。從研究出來的一些重力理論,他於1915年發表了廣義相對論。他持續研究統計力學與量子理論,導致他給出粒子論與對於分子運動的解釋。在1917年,愛因斯坦應用廣義相對論來建立大尺度結構宇宙的模型。 阿道夫·希特勒於1933年開始掌權成為德國總理之時,愛因斯坦正在走訪美國。由於愛因斯坦是猶太裔人,所以儘管身為普魯士科學院教授,亦沒有返回德國。1940年,他定居美國,隨後成為美國公民。在第二次世界大戰前夕,他在一封寫給當時美國總統富蘭克林·羅斯福的信裏署名,信內提到德國可能發展出一種新式且深具威力的炸彈,因此建議美國也盡早進行相關研究,美國因此開啟了曼哈頓計劃。愛因斯坦支持增強同盟國的武力,但譴責將當時新發現的核裂变用於武器用途的想法,後來愛因斯坦與英國哲學家伯特蘭·羅素共同簽署《羅素—愛因斯坦宣言》,強調核武器的危險性。 愛因斯坦總共發表了300多篇科學論文和150篇非科學作品。愛因斯坦被誉为是“現代物理学之父”及20世紀世界最重要科學家之一。他卓越和原創性的科學成就使得“愛因斯坦”一詞成為“天才”的同義詞。.

微积分学和阿尔伯特·爱因斯坦 · 经典力学和阿尔伯特·爱因斯坦 · 查看更多 »

自然哲学的数学原理

《自然哲学的数学原理》(Philosophiæ Naturalis Principia Mathematica),是英国科学家艾萨克·牛顿的三卷本代表作,成书于1686年。1687年7月5日该书的拉丁文版首次出版发行。Among versions of the Principia online:.

微积分学和自然哲学的数学原理 · 经典力学和自然哲学的数学原理 · 查看更多 »

艾萨克·牛顿

艾萨克·牛顿爵士,(Sir Isaac Newton,,英語發音)是一位英格兰物理学家、数学家、天文学家、自然哲学家和煉金術士。1687年他发表《自然哲学的数学原理》,阐述了万有引力和三大运动定律,奠定了此后三个世纪--力学和天文学的基础,成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心学说提供了强而有力的理论支持,并推动了科学革命。 在力学上,牛顿阐明了动量和角动量守恒的原理。在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。 在数学上,牛顿与戈特弗里德·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。 在2005年,英国皇家学会进行了一场“谁是科学史上最有影响力的人”的民意调查,在被调查的皇家学会院士和网民投票中,牛顿被认为比阿尔伯特·爱因斯坦更具影响力。.

微积分学和艾萨克·牛顿 · 经典力学和艾萨克·牛顿 · 查看更多 »

速度

速度(Vēlōcitās,Vitesse,Velocità,Geschwindigkeit,Velocity)是描述物体运动快慢和方向的物理量。物体在一段时间\Delta t内的平均速度\bar是它在这段时间里的位移\Delta \boldsymbol和时间间隔之比: 物体在某一时刻的瞬时速度\boldsymbol则是定義為位置矢量\boldsymbol 隨時間t的變化率: 物理学中提到物体的速度通常是指其瞬时速度。速度在国际单位制中的单位是米每秒,国际符号是m/s,中文符号是米/秒。相对论框架中,物体的速度上限是光速。 日常生活中,速度和速率幾乎是同義的。然而在物理學中,速度和速率是两个不同的概念。速度是矢量,具有大小和方向;速率則純粹指物體運動的快慢,是标量,没有方向。举例来说,假如一辆汽车以60公里每小时的速率朝正北方行驶,那么它的速度是一个大小等于60公里每小时、方向指向正北的矢量。物体的瞬时速率等于瞬时速度的大小,而平均速率则不一定等于平均速度的大小。.

微积分学和速度 · 经典力学和速度 · 查看更多 »

泰勒级数

在数学中,泰勒级数(Taylor series)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。泰勒级数是以于1715年发表了泰勒公式的英國数学家布魯克·泰勒(Sir Brook Taylor)来命名的。通过函数在自变量零点的导数求得的泰勒级数又叫做麦克劳林级数,以苏格兰数学家科林·麦克劳林的名字命名。 拉格朗日在1797年之前,最先提出帶有餘項的現在形式的泰勒定理。实际应用中,泰勒级数需要截断,只取有限项,可以用泰勒定理估算这种近似的误差。一个函数的有限项的泰勒级数叫做泰勒多项式。一个函数的泰勒级数是其泰勒多项式的极限(如果存在极限)。即使泰勒级数在每点都收敛,函数与其泰勒级数也可能不相等。开区间(或复平面开片)上,与自身泰勒级数相等的函数称为解析函数。.

微积分学和泰勒级数 · 泰勒级数和经典力学 · 查看更多 »

数学分析

数学分析(mathematical analysis)区别于其他非数学类学生的高等数学内容,是分析学中最古老、最基本的分支,一般指以微积分学、无穷级数和解析函數等的一般理论为主要内容,并包括它们的理论基础(实数、函数、測度和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。出自《数学辞海(第一卷)》 数学分析研究的內容包括實數、複數、實函數及複變函數。数学分析是由微積分演進而來,在微积分发展至现代阶段中,从应用中的方法总结升华为一类综合性分析方法,且初等微積分中也包括許多數學分析的基礎概念及技巧,可以认为这些应用方法是高等微积分生成的前提。数学分析的方式和其幾何有關,不過只要任一數學空間有定義鄰域(拓扑空间)或是有針對兩物件距離的定義(度量空间),就可以用数学分析的方式進行分析。.

微积分学和数学分析 · 数学分析和经典力学 · 查看更多 »

上面的列表回答下列问题

微积分学和经典力学之间的比较

微积分学有151个关系,而经典力学有137个。由于它们的共同之处24,杰卡德指数为8.33% = 24 / (151 + 137)。

参考

本文介绍微积分学和经典力学之间的关系。要访问该信息提取每篇文章,请访问: