之间微积分学和线性代数相似
微积分学和线性代数有(在联盟百科)13共同点: 印度,实数,中國,微分,微分方程,函数,线性映射,经济学,物理学,解析几何,戈特弗里德·莱布尼茨,数学,数学分析。
印度
印度共和国(भारत गणराज्य,;Republic of India),通称印度(भारत;India),是位于南亚印度次大陆上的国家,印度面积位列世界第七,印度人口众多,位列世界第二,截至2018年1月印度拥有人口13.4亿,仅次于中国人口的13.8亿,人口成長速度比中國還快,预计近年将交叉。是亚洲第二大也是南亚最大的国家,面积328万平方公里(实际管辖),同时也是世界第三大(购买力平价/PPP)经济体。 印度并非单一民族及文化的国家。印度的民族和种族非常之多,有“民族大熔炉”之称,其中印度斯坦族占印度总人口的大约一半,是印度最大的民族。印度各个民族都拥有各自的语言,仅宪法承认的官方语言就有22种之多,其中印地语和英语被定为印度共和国的联邦官方语言,并且法院裁定印度没有国语。英语在印度非常流行,尤其在南印地位甚至高于印地语,但受限于教育水平,普通民众普遍不精通英语。另外,印度也是一个多宗教的国家,世界4大宗教其中的佛教和印度教都源自印度。大部分印度人信仰印度教。伊斯兰教在印度也有大量信徒,是印度的第二大宗教,信教者约占印度的14.6%(截至2011年,共有约1亿7千7百万人)。伊斯兰教是在公元8世纪随着阿拉伯帝国的扩张而传播到印度的。公元10世纪后,北印的大多数王朝统治者都是信奉伊斯兰教的,特别是莫卧儿王朝。印度也是众多正式和非正式的多边国际组织的成员,包括世界贸易组织、英联邦、金砖五国、南亚区域合作联盟和不结盟运动等。 以耕种农业、城市手工业、服务业以及其支撑产业为主的部分行业已经相对取得了进展。除了民族文化与北方地形的丰富使印度旅游业颇受欢迎之外,由于时差,大批能说英语的人才也投入外包行业(即是外国企业把客户咨询,电话答录等等服务转移到印度)。另一方面,宝莱坞电影的文化输出在英语圈乃至全球的影响力不亚于世界主流。同时印度还是很多专利过期药物的生产地,以低价格提供可靠的医疗。近年来,印度政府还大力投资本国高等教育,以利于在科学上与国际接轨,例如自主太空研究、南亚半岛生态研究等等。印度最重要的贸易伙伴是美国、欧盟、日本、中国和阿拉伯联合酋长国。.
实数
实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.
中國
中國是位於東亞的國家或地理區域,此名稱最早见于西周,用來指以洛陽盆地為中心的中原地區,與四夷相對,之後逐漸用來指稱從夏朝起延續傳承至今的各政權。其疆域隨著歷史演變而有所增減,但大多不脫以中原王朝根基所在的汉地九州為中心。民族構成上以漢族為主體,文化上透過歷代王朝政權與周邊各民族政權的交流與征戰,而融入不少周邊民族的文化。現今國際上廣泛承認代表中國的政權是中华人民共和国。 中國文明是世界上最早的文明之一。 新石器时期,中原地区开始出现聚落组织;公元前27世纪左右出现方国,以共主為首的制度;前20世纪开始,古代中国进入世袭的封建皇朝阶段;公元前2世紀,秦滅六國,完成中國第一次大一統。此後幾千年來,中國的政治制度以半傳統的夏代為基礎的世襲君主制以朝代更換政權運作。此後经多次擴大,破裂,重組,朝代更迭,經過數次统一与分裂交替进行。直到1911年辛亥革命後,中國废除君主制,实行共和制,清朝被1912年成立的中华民国取代。1945年第二次國共內戰爆發後,中國共產黨逐漸控制中國的大部分領土,最終於1949年10月1日建立中华人民共和国,形成了中华民国與中华人民共和国双方相隔台灣海峽对峙的局面;惟做為國際關係核心場域的聯合國系統內,中華民國政府仍持擁有中國代表權,直到1971年聯合國大會2758號決議通過後,才被中華人民共和國政府完全取代。 中國經濟曾经在相当长的历史时期中在世界上占有重要的地位,其周期通常与王朝的兴衰与更替相對應。中國經濟史可分为几个階段:第一階段為遠古至西晉末年,其中以三國孫吳時轉變較大;第二階段為東晉至北宋末年,其中以唐安史之亂劃分為前後;第三階段為南宋建立至鴉片戰爭張家駒,《兩宋經濟重心的南移》,湖北人民出版社,1957年。工业革命後,西方國家的工業成品,無論在數量和質量上,相較於當時中国純手工業經濟出産的商品,佔有壓倒性的優勢。而且,由于明清兩代以來,中國對外政策趨於保守,並對外實行海禁,使得西方工業化的影响步伐在中国国門前站住了腳,中国在19世紀末以前,一直沒有很好地進行工業化,經濟遂落後於西方。1978年改革開放施行後,中国经济發展迅速,對世界經濟的影響也日漸顯著。 中国文化歷經上千年的歷史演變,是各區域、各民族古代文化長期相互交流、借鉴、融合的結果。其中汉文化对日本、朝鮮半島和东南亚有深远影响,形成漢字文化圈。中国的传统艺术形式有国乐、相声、戏曲、书法、国画、文學、陶瓷藝術、雕刻等,传统娱乐活动有象棋、围棋、麻将、中国武术等。茶、酒、菜和筷子等为中国的特色饮食文化,春节(舊曆新年)、元宵、清明、端午、七夕、中秋、重阳、冬至等为传统节日。中国传统上是一个儒学国家,以夏历为历法,以五伦为道德准则。春秋时期孔子「有教无类,因材施教」开始办私塾培养人才,汉朝时采用察举推选政府官员,隋朝起实行科举在平民中选拔人才。此外,中国歷朝歷代都设有史官,因此保存有十分详尽的历史资料,如《二十四史》、《资治通鉴》等。古代中國在科學領域上有豐厚的成就。.
微分
在数学中,微分是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。当某些函数\textstyle f的自变量\textstyle x有一个微小的改变\textstyle h时,函数的变化可以分解为两个部分。一个部分是线性部分:在一维情况下,它正比于自变量的变化量\textstyle h,可以表示成\textstyle h和一个与\textstyle h无关,只与函数\textstyle f及\textstyle x有关的量的乘积;在更广泛的情况下,它是一个线性映射作用在\textstyle h上的值。另一部分是比\textstyle h更高阶的无穷小,也就是说除以\textstyle h后仍然会趋于零。当改变量\textstyle h很小时,第二部分可以忽略不计,函数的变化量约等于第一部分,也就是函数在\textstyle x处的微分,记作\displaystyle f'(x)h或\displaystyle \textrmf_x(h)。如果一个函数在某处具有以上的性质,就称此函数在该点可微。 不是所有的函数的变化量都可以分为以上提到的两个部分。若函数在某一点无法做到可微,便称函数在该点不可微。 在古典的微积分学中,微分被定义为变化量的线性部分,在现代的定义中,微分被定义为将自变量的改变量\textstyle h映射到变化量的线性部分的线性映射\displaystyle \textrmf_x。这个映射也被称为切映射。.
微分方程
微分方程(Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 微分方程的应用十分广泛,可以解决许多与导数有关的问题 。物理中许多涉及变力的运动学、动力学问题,如空气的阻力為速度函數的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。 数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。.
函数
函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).
线性映射
在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。 “线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。.
经济学
經濟學是一門对产品和服务的生产、分配以及消费进行研究的社會科學。西方语言中的“经济学”一词源於古希臘的Marshall, Alfred, and Mary Paley Marshall (1879).
物理学
物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.
解析几何
解析几何(Analytic geometry),又稱為坐标几何(Coordinate geometry)或卡氏幾何(Cartesian geometry),早先被叫作笛卡兒几何,是一种借助于解析式进行图形研究的几何学分支。解析几何通常使用二维的平面直角坐标系研究直线、圆、圆锥曲线、摆线、星形线等各种一般平面曲线,使用三维的空间直角坐标系来研究平面、球等各种一般空间曲面,同时研究它们的方程,并定义一些图形的概念和参数。 在中学课本中,解析几何被简单地解释为:采用数值的方法来定义几何形状,并从中提取数值的信息。然而,这种数值的输出可能是一个方程或者是一种几何形状。 1637年,笛卡兒在《方法论》的附录“几何”中提出了解析几何的基本方法。 以哲学观点写成的这部法语著作为后来牛顿和莱布尼茨各自提出微积分学提供了基础。 对代数几何学者来说,解析几何也指(实或者複)流形,或者更广义地通过一些複變數(或實變數)的解析函数为零而定义的解析空间理论。这一理论非常接近代数几何,特别是通过让-皮埃尔·塞尔在《代数几何和解析几何》领域的工作。这是一个比代数几何更大的领域,不过也可以使用类似的方法。.
戈特弗里德·莱布尼茨
戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz, 或 ;Godefroi Guillaume Leibnitz,,),德意志哲学家、数学家,歷史上少見的通才,獲誉为十七世纪的亚里士多德。他本人是律師,經常往返於各大城鎮;他許多的公式都是在顛簸的馬車上完成的,他也自稱具有男爵的貴族身份。 莱布尼茨在数学史和哲学史上都占有重要地位。在数学上,他和牛顿先后独立发明了微积分,而且他所使用的微積分的数学符号被更廣泛的使用,萊布尼茨所发明的符号被普遍认为更综合,适用范围更加广泛。莱布尼茨还对二进制的发展做出了贡献。 在哲学上,莱布尼茨的乐观主义最为著名;他认为,“我们的宇宙,在某种意义上是上帝所创造的最好的一个”。他和笛卡尔、巴鲁赫·斯宾诺莎被认为是十七世纪三位最伟大的理性主义哲学家。莱布尼茨在哲学方面的工作在预见了现代逻辑学和分析哲学诞生的同时,也显然深受经院哲学传统的影响,更多地应用第一性原理或先验定义,而不是实验证据来推导以得到结论。 莱布尼茨对物理学和技术的发展也做出了重大贡献,并且提出了一些后来涉及广泛——包括生物学、医学、地质学、概率论、心理学、语言学和信息科学——的概念。莱布尼茨在政治学、法学、伦理学、神学、哲学、历史学、语言学诸多方向都留下了著作。 莱布尼茨对如此繁多的学科方向的贡献分散在各种学术期刊、成千上万封信件、和未发表的手稿中,其中約四成為拉丁文、約三成為法文、約一成五為德文。截至2010年,莱布尼茨的所有作品还没有收集完全。 2007年,戈特弗里德·威廉·莱布尼茨图书馆暨下薩克森州州立圖書舘的莱布尼茨手稿藏品被收入联合国教科文组织编写的世界记忆项目。 由於莱布尼茨曾在汉诺威生活和工作了近四十年,并且在汉诺威去世,为了纪念他和他的学术成就,2006年7月1日,也就是萊布尼茨360周年诞辰之际,汉诺威大学正式改名为汉诺威莱布尼茨大学。.
微积分学和戈特弗里德·莱布尼茨 · 戈特弗里德·莱布尼茨和线性代数 ·
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
数学分析
数学分析(mathematical analysis)区别于其他非数学类学生的高等数学内容,是分析学中最古老、最基本的分支,一般指以微积分学、无穷级数和解析函數等的一般理论为主要内容,并包括它们的理论基础(实数、函数、測度和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。出自《数学辞海(第一卷)》 数学分析研究的內容包括實數、複數、實函數及複變函數。数学分析是由微積分演進而來,在微积分发展至现代阶段中,从应用中的方法总结升华为一类综合性分析方法,且初等微積分中也包括許多數學分析的基礎概念及技巧,可以认为这些应用方法是高等微积分生成的前提。数学分析的方式和其幾何有關,不過只要任一數學空間有定義鄰域(拓扑空间)或是有針對兩物件距離的定義(度量空间),就可以用数学分析的方式進行分析。.
上面的列表回答下列问题
- 什么微积分学和线性代数的共同点。
- 什么是微积分学和线性代数之间的相似性
微积分学和线性代数之间的比较
微积分学有151个关系,而线性代数有115个。由于它们的共同之处13,杰卡德指数为4.89% = 13 / (151 + 115)。
参考
本文介绍微积分学和线性代数之间的关系。要访问该信息提取每篇文章,请访问: