我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

微分方程和馬克士威方程組

快捷方式: 差异相似杰卡德相似系数参考

微分方程和馬克士威方程組之间的区别

微分方程 vs. 馬克士威方程組

微分方程(Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 微分方程的应用十分广泛,可以解决许多与导数有关的问题 。物理中许多涉及变力的运动学、动力学问题,如空气的阻力為速度函數的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。 数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。. 克士威方程組(Maxwell's equations)是一組描述電場、磁場與電荷密度、電流密度之間關係的偏微分方程。該方程組由四個方程式組成,分別是描述电荷如何产生电场的高斯定律、表明磁单极子不存在的高斯磁定律、解釋时变磁场如何产生电场的法拉第感应定律,以及說明电流和时变电场怎样产生磁场的馬克士威-安培定律。馬克士威方程組是因英国物理学家詹姆斯·馬克士威而命名。馬克士威在19世紀60年代構想出這方程組的早期形式。 在不同的領域會使用到不同形式的馬克士威方程組。例如,在高能物理學與引力物理學裏,通常會用到時空表述的馬克士威方程組版本。這種表述建立於結合時間與空間在一起的愛因斯坦時空概念,而不是三維空間與第四維時間各自獨立展現的牛頓絕對時空概念。愛因斯坦的時空表述明顯地符合狹義相對論與廣義相對論。在量子力學裏,基於電勢與磁勢的馬克士威方程組版本比較獲人們青睞。 自從20世紀中期以來,物理學者已明白馬克士威方程組不是精確规律,精確的描述需要藉助更能顯示背後物理基礎的量子電動力學理論,而馬克士威方程組只是它的一種經典場論近似。儘管如此,對於大多數日常生活中涉及的案例,通過馬克士威方程組計算獲得的解答跟精確解答的分歧甚為微小。而對於非經典光、雙光子散射、量子光學與許多其它與光子或虛光子相關的現象,馬克士威方程組不能給出接近實際情況的解答。 從馬克士威方程組,可以推論出光波是電磁波。馬克士威方程組和勞侖茲力方程式是經典電磁學的基礎方程式。得益于這一組基礎方程式以及相關理論,許多現代的電力科技與電子科技得以被發明并快速發展。.

之间微分方程和馬克士威方程組相似

微分方程和馬克士威方程組有(在联盟百科)11共同点: 偏微分方程工程学廣義相對論初值問題牛頓第二運動定律解析解詹姆斯·克拉克·麦克斯韦边值问题量子力学波动方程数值分析

偏微分方程

偏微分方程(partial differential equation,缩写作PDE)指含有未知函数及其偏导数的方程。描述自变量、未知函數及其偏导數之間的關係。符合這個關係的函数是方程的解。 偏微分方程分為線性偏微分方程式與非線性偏微分方程式,常常有幾個解而且涉及額外的邊界條件。.

偏微分方程和微分方程 · 偏微分方程和馬克士威方程組 · 查看更多 »

工程学

工程学、工程科学或工学,是通过研究与实践应用数学、自然科学、社会学等基础学科的知识,来达到改良各行业中现有建筑、机械、仪器、系统、材料、化學和加工步骤的设计和应用方式一门学科。实践与研究工程学的人叫做工程师。 在高等学府中,将自然科学原理应用至工业、农业、服务业等各个生产部门所形成的诸多工程学科也称为工科和工学。.

工程学和微分方程 · 工程学和馬克士威方程組 · 查看更多 »

廣義相對論

广义相对论是現代物理中基于相对性原理利用几何语言描述的引力理论。该理论由阿尔伯特·爱因斯坦等人自1907年开始发展,最终在1915年基本完成。广义相对论将经典的牛顿万有引力定律與狭义相对论加以推廣。在广义相对论中,引力被描述为时空的一种几何属性(曲率),而时空的曲率则通过爱因斯坦场方程和处于其中的物质及辐射的能量與动量联系在一起。 从广义相对论得到的部分预言和经典物理中的对应预言非常不同,尤其是有关时间流易、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——广义相对论虽然并非当今描述引力的唯一理论,但却是能够与实验数据相符合的最简洁的理论。不过仍然有一些问题至今未能解决。最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。 爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用。比如它预言了某些大质量恒星终结后,会形成时空极度扭曲以至于所有物质(包括光)都无法逸出的区域,黑洞。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们可能观察到处于遥远位置的同一个天体形成的多个像。广义相对论还预言了引力波的存在。引力波已经由激光干涉引力波天文台在2015年9月直接观测到。此外,广义相对论还是现代宇宙学中的的理论基础。.

廣義相對論和微分方程 · 廣義相對論和馬克士威方程組 · 查看更多 »

初值問題

在數學裏,初值問題是一個涉及微分方程式與一些初始條件的問題;這初始條件是微分方程式的未知函數在某些點的設定值。 以下是一些初值問題的例子:.

初值問題和微分方程 · 初值問題和馬克士威方程組 · 查看更多 »

牛頓第二運動定律

牛頓第二運動定律(Newton's second law of motion)闡明,物體的加速度與所受的凈力成正比,與質量成反比,物體的加速度與凈力同方向。 牛頓第二定律亦可以表述為「物体的动量对时间的变化率和所受外力成正比」。即动量对时间的一阶导数等于外力。.

微分方程和牛頓第二運動定律 · 牛頓第二運動定律和馬克士威方程組 · 查看更多 »

解析解

解析解,又稱為閉式解,是可以用解析表達式來表達的解。 在数学上,如果一个方程或者方程组存在的某些解,是由有限次常见运算的組合给出的形式,则称该方程存在解析解。二次方程的根就是一个解析解的典型例子。在低年级数学的教学当中,解析解也被称为公式解。 当解析解不存在时,比如五次以及更高次的代数方程,则该方程只能用数值分析的方法求解近似值。大多數偏微分方程,尤其是非线性偏微分方程,都只有數值解。 解析表達式的准确含义依赖于何种运算称为常见运算或常见函数。传统上,只有初等函数被看作常见函数(由於初等函數的運算總是獲得初等函數,因此初等函數的運算集合具有閉包性質,所以又稱此種解為閉式解),无穷级数、序列的极限、连分数等都不被看作常见函数。按这种定义,许多累积分布函数无法写成解析表達式。但如果把特殊函数,比如误差函数或gamma函数也看作常见函数,则累积分布函数可以写成解析表達式。 在计算机应用中,这些特殊函数因为大多有现成的数值法实现,它们通常被看作常见运算或常见函数。实际上,在计算机的计算过程中,多数基本函数都是用数值法计算的,所以所谓的基本函数和特殊函数对计算机而言并无区别。 J J J en:Analytical expression ja:解析解.

微分方程和解析解 · 解析解和馬克士威方程組 · 查看更多 »

詹姆斯·克拉克·麦克斯韦

詹姆斯·克拉克·麦克斯韦(James Clerk Maxwell,),苏格兰数学物理学家。其最大功绩是提出了将电、磁、光统归为电磁场中现象的麦克斯韦方程组。麦克斯韦在电磁学领域的功绩实现了物理学自艾萨克·牛顿后的第二次统一。 在1864年發表的論文《電磁場的動力學理論》中,麦克斯韦提出電場和磁場以波的形式以光速在空間中传播,并提出光是引起同种介质中電场和磁场中許多現象的电磁扰动,同时从理论上预测了电磁波的存在。此外,他还推进了分子运动论的发展,提出了彩色摄影的基础理论,奠定了结构刚度分析的基礎。 麦克斯韦被普遍认为是十九世纪物理学家中,对于二十世纪初物理学的巨大进展影响最为巨大的一位。他的科学工作为狭义相对论和量子力学打下理论基础,是现代物理学的先声。有观点认为,他对物理学的发展做出的贡献仅次于艾萨克·牛顿和阿尔伯特·爱因斯坦。在麦克斯韦百年诞辰时,爱因斯坦本人盛赞了麦克斯韦,称其对于物理学做出了“自牛顿时代以来的一次最深刻、最富有成效的变革”。.

微分方程和詹姆斯·克拉克·麦克斯韦 · 詹姆斯·克拉克·麦克斯韦和馬克士威方程組 · 查看更多 »

边值问题

在微分方程中,边值问题是一个微分方程和一组称之为边界条件的约束条件。边值问题的解通常是符合约束条件的微分方程的解。 物理学中经常遇到边值问题,例如波动方程等。許多重要的边值问题屬於Sturm-Liouville問題。這類問題的分析會和微分算子的本徵函數有關。 在实际应用中,边值问题应当是适定的(即:存在解,解唯一且解會隨著初始值連續的變化)。許多偏微分方程領域的理論提出是為要證明科學及工程應用的許多边值问题都是适定問題。 最早研究的边值问题是狄利克雷问题,是要找出调和函数,也就是拉普拉斯方程的解,後來是用狄利克雷原理找到相關的解。.

微分方程和边值问题 · 边值问题和馬克士威方程組 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

微分方程和量子力学 · 量子力学和馬克士威方程組 · 查看更多 »

波动方程

波动方程或稱波方程(wave equation)是一种重要的偏微分方程,主要描述自然界中的各种的波动现象,包括横波和纵波,例如声波、光波、无线电波和水波。波动方程抽象自声学、物理光学、电磁学、电动力学、流体力学等领域。 历史上许多科学家,如达朗贝尔、欧拉、丹尼尔·伯努利和拉格朗日等在研究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。 1746年,达朗贝尔发现了一维波动方程,欧拉在其后10年之内发现了三维波动方程。Speiser, David.

微分方程和波动方程 · 波动方程和馬克士威方程組 · 查看更多 »

数值分析

数值分析(numerical analysis),是指在数学分析(区别于离散数学)问题中,对使用数值近似(相对于一般化的符号运算)算法的研究。 巴比伦泥板YBC 7289是关于数值分析的最早数学作品之一,它给出了 \sqrt 在六十进制下的一个数值逼近,\sqrt是一個邊長為1的正方形的對角線,在西元前1800年巴比倫人也已在巴比倫泥板上計算勾股數(畢氏三元數)(3, 4, 5),即直角三角形的三邊長比。 数值分析延續了實務上數學計算的傳統。巴比倫人利用巴比伦泥板計算\sqrt的近似值,而不是精確值。在許多實務的問題中,精確值往往無法求得,或是無法用有理數表示(如\sqrt)。数值分析的目的不在求出正確的答案,而是在其誤差在一合理範圍的條件下找到近似解。 在所有工程及科學的領域中都會用到数值分析。像天體力學研究中會用到常微分方程,最優化會用在资产组合管理中,數值線性代數是資料分析中重要的一部份,而隨機微分方程及馬可夫鏈是在醫藥或生物學中生物細胞模擬的基礎。 在電腦發明之前,数值分析主要是依靠大型的函數表及人工的內插法,但在二十世紀中被電腦的計算所取代。不過電腦的內插演算法仍然是数值分析軟體中重要的一部份。.

微分方程和数值分析 · 数值分析和馬克士威方程組 · 查看更多 »

上面的列表回答下列问题

微分方程和馬克士威方程組之间的比较

微分方程有82个关系,而馬克士威方程組有135个。由于它们的共同之处11,杰卡德指数为5.07% = 11 / (82 + 135)。

参考

本文介绍微分方程和馬克士威方程組之间的关系。要访问该信息提取每篇文章,请访问: