之间微下拉晶體成長法和雷射加熱平台成長相似
微下拉晶體成長法和雷射加熱平台成長有(在联盟百科)4共同点: 坩埚,釔鋁石榴石,柴可拉斯基法,晶種。
坩埚
坩埚(Crucible)是實驗室中使用的一种杯状器皿,最早使用于炼金术实验。用途是盛液体或固体进行高温加热。另外,冶金学中用来融化金属的容器也被称作坩埚。 坩埚的材料要求耐热,比较坚固,而且在高温下也不易发生化学反应。传统坩埚为陶瓷制作,现代有用石墨、白金、镍、铬等金属。有些坩埚有相同材料制作的盖子。.
釔鋁石榴石
釔鋁石榴石(yttrium aluminium garnet),簡稱YAG,分子式Y3Al5O12,為人工合成的透明石榴石。是钇铝复合材料的三相之一(其他两相为钇铝单斜晶体(YAM,Y4Al2O9)和钇铝钙钛矿(YAP,YAlO3))。相較於其他人工合成寶石,顏色較灰暗,但硬度較高,可用來切割。 纯的钇铝石榴石不能用于激光媒质。但如果掺杂适当的离子,YAG可以被用作各种固体激光器的主要材料,如钕离子和铒离子(掺钕钇铝石榴石雷射、)。若掺杂铈,形成的含杂YAG可作阴极射线管的磷光体、发光二极管和闪烁体探测器。.
微下拉晶體成長法和釔鋁石榴石 · 釔鋁石榴石和雷射加熱平台成長 ·
柴可拉斯基法
柴可拉斯基法(简称柴氏法 Czochralski process),又称直拉法,是一种用来获取半导体(如硅、锗和砷化镓等)、金属(如钯、铂、银、金等)、盐、合成宝石单晶材料的晶体生长方法。这个方法得名于波兰科学家扬·柴可拉斯基(Jan Czochralski),他在1916年研究金属的结晶速率时,发明了这种方法。後來,演變為鋼鐵工廠的標準製程之一。 直拉法最重要的应用是晶、晶棒、单晶硅的生长。其他的半导体,例如砷化镓,也可以利用直拉法进行生长,也有一些其他方法(如布里奇曼-史托巴格法)可以获得更低的晶体缺陷密度。.
微下拉晶體成長法和柴可拉斯基法 · 柴可拉斯基法和雷射加熱平台成長 ·
晶種
晶種是一小塊單晶或多晶(通常是單晶),像種子般用來成長與自身相同材料、相同晶體結構的大晶體。無論把晶種浸入過飽和溶液,或使晶種與熔融材料接觸並冷卻,或者讓材料蒸氣在晶種表面沉積,皆能成長出大晶體。 晶種效果背後的理論,從化合物與過飽和溶液(或與蒸氣)的分子間物理交互作用衍生而來。在溶液中,自由的可溶分子(溶質)在隨機流動中自由移動。此隨機流動允許兩個或更多的化合物分子有機會交互作用。這種交互作用可以強化分離的分子之間的分子間作用力並形成晶格的基礎。然而將晶種置入溶液會使隨機分子間的碰撞與交互作用減少,促進再結晶過程。 藉由引入已有秩序的晶體,分子間不用太仰賴隨機流動就可以很容易地進行交互作用。在溶液中這種溶質發展出晶格的相變化被稱為成核。簡言之,晶種效果就是縮短了再結晶過程中的成核時間。 在半導體產業中,常用的柴可拉斯基法與布里奇曼-史托巴格法就是用小晶種長出大人造胚晶或的運用實例。.
上面的列表回答下列问题
- 什么微下拉晶體成長法和雷射加熱平台成長的共同点。
- 什么是微下拉晶體成長法和雷射加熱平台成長之间的相似性
微下拉晶體成長法和雷射加熱平台成長之间的比较
微下拉晶體成長法有12个关系,而雷射加熱平台成長有19个。由于它们的共同之处4,杰卡德指数为12.90% = 4 / (12 + 19)。
参考
本文介绍微下拉晶體成長法和雷射加熱平台成長之间的关系。要访问该信息提取每篇文章,请访问: