徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

彭罗斯-霍金奇点定理和黑洞

快捷方式: 差异相似杰卡德相似系数参考

彭罗斯-霍金奇点定理和黑洞之间的区别

彭罗斯-霍金奇点定理 vs. 黑洞

彭罗斯-霍金奇点定理(Penrose Hawking singularity theorems)是关于广义相对论中何时产生引力奇点的问题的一些研究结果。 爱因斯坦场方程解的奇点是指下面两个问题 . 黑洞(英文:black hole)是根據廣義相對論所推論、在宇宙空間中存在的一種質量相當大的天體和星體(並非是一般認知的「洞」概念)。黑洞是由質量足够大的恒星在核聚变反应的燃料耗盡後,發生引力坍缩而形成。黑洞的質量是如此之大,它产生的引力场是如此之强,以致于大量可測物质和辐射都无法逃逸,就連传播速度極快的光子也逃逸不出來。由于类似热力学上完全不反射光线的黑体,故名黑洞。在黑洞的周圍,是一個無法偵測的事件視界,標誌著無法返回的臨界點,而在黑洞中心有一個密度趨近於無限的奇異點。 當恆星內部氫元素全部核融合完畢時,因燃料用完無法抵抗自身重力而開始向內塌陷,但隨著壓力越來越高,內部的重元素會重新開始燃燒導致瞬間膨脹,這時恆星的體積將暴增至原先的數十倍至百倍,這便是紅巨星,質量更大的恆星則會發生超新星爆炸,無論是紅巨星或是超新星,都會將外部物質全部吹飛,直到連重元素也燒完時,重力又會使得恆星繼續向內塌陷,最後形成一顆與月球差不多大小的白矮星,質量稍大的恆星則會形成中子星,會放出規律的電磁波,至於質量更大的恆星則會繼續塌陷,強大的重力使周圍的空間產生扭曲,最後形成一個密度每立方公分約一億噸的天體:「黑洞」。直至目前為止,所發現質量最小的黑洞大約有3.8倍太陽質量。 黑洞無法直接觀測,但可以藉由間接方式得知其存在與質量,並且觀測到它對其他事物的影響。藉由物體被吸入之前因高熱而放出紫外線和X射線的「邊緣訊息」,可以獲取黑洞的存在的訊息。推測出黑洞的存在也可藉由間接觀測恆星或星際雲氣團繞行黑洞軌跡,來取得位置以及質量。 黑洞是天文物理史上,最引人注目的題材之一,在科幻小說、電影甚至報章媒體經常可見將黑洞作為素材。迄今,黑洞的存在已得到天文學界和物理學界的绝大多數研究者所認同,並且天文界不時提出於宇宙中觀測到已存在的黑洞。 根據英國物理學者史蒂芬·霍金於2014年1月26日的論據:愛因斯坦的重力方程式的兩種奇點的解,分別是黑洞跟白洞。不過理論上黑洞應該是一種「有進沒出」的天體,而白洞則只能出而不能進。然而黑洞卻有粒子的輻射,所以不再適合稱其名為黑洞,而應該改其名為「灰洞」,先前認為黑洞可以毀滅資訊情報的看法,是他「最大的失誤」。.

之间彭罗斯-霍金奇点定理和黑洞相似

彭罗斯-霍金奇点定理和黑洞有(在联盟百科)3共同点: 廣義相對論引力奇点爱因斯坦场方程

廣義相對論

广义相对论是現代物理中基于相对性原理利用几何语言描述的引力理论。该理论由阿尔伯特·爱因斯坦等人自1907年开始发展,最终在1915年基本完成。广义相对论将经典的牛顿万有引力定律與狭义相对论加以推廣。在广义相对论中,引力被描述为时空的一种几何属性(曲率),而时空的曲率则通过爱因斯坦场方程和处于其中的物质及辐射的能量與动量联系在一起。 从广义相对论得到的部分预言和经典物理中的对应预言非常不同,尤其是有关时间流易、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——广义相对论虽然并非当今描述引力的唯一理论,但却是能够与实验数据相符合的最简洁的理论。不过仍然有一些问题至今未能解决。最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。 爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用。比如它预言了某些大质量恒星终结后,会形成时空极度扭曲以至于所有物质(包括光)都无法逸出的区域,黑洞。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们可能观察到处于遥远位置的同一个天体形成的多个像。广义相对论还预言了引力波的存在。引力波已经由激光干涉引力波天文台在2015年9月直接观测到。此外,广义相对论还是现代宇宙学中的的理论基础。.

廣義相對論和彭罗斯-霍金奇点定理 · 廣義相對論和黑洞 · 查看更多 »

引力奇点

引力奇異点(Gravitational singularity),也称时空奇異点(spacetime singularity)或奇點,是一个體積无限小、密度无限大、引力无限大、時空曲率無限大的點,在这个点,目前所知的物理定律無法适用。例如大爆炸之前的。 当前的理论推测,当一个物体落入黑洞裡并趋近位于中心的奇点时,这物体会因不同部位受到增强的吸引力而被拉长,為潮汐力,或称麵條化,最终完全失去维度并无可挽回地消失于奇点。 外界观测者在安全的距离外,对这事件的观测则会完全不同。根据相对论,外界观测者会看到物体随着趋近于黑洞而变得越来越慢,最终在事件视界完全停止,而从来没有真正落入黑洞。 奇点的存在常被用来作为广义相对论失效的证明,这是意料之内的,因奇点存在于量子效应显著的状况中。可以想像,将来某种与量子引力的联合理论(如目前研究的超弦理论)能够无需奇点来解释黑洞,但这种理论还需要很多年。 根据宇宙审查假说,黑洞的奇点保持隐藏在事件视界后面,事件视界内的光线无法逃逸,因此无法直接对其观测。假想所允许的唯一的例外(称为裸奇点)是大爆炸理论一开始的大爆炸。根據廣義相對論,在大爆炸發生以前,宇宙的初始狀態為一奇點。根據大爆炸理論,廣義相對論及量子力學會在奇異點處失效;但量子力學實際上並不容許粒子佔據比自己波長小的空間。 两种最重要的时空奇点的类型分别是曲率奇異点和锥形奇異点。廣義相對論預言奇點存在於黑洞之內:任何恆星因引力塌縮至小於其史瓦西半徑後會形成黑洞,產生一個被事件視界包圍的奇異點(同樣,黑洞形成的理論並沒有考慮量子力學)。這種奇點被稱為曲率奇異點。 有數學推導指出,物質會被奇異點破壞,消失於三維空間,以二維的形式存於黑洞表面,而其二維數據理論上可以重現於三維空間。這使科學家推測世界實際為二維數據,而三維空可能只是被二維數據所投映。 按奇点的本性,我们有可能永远无法完全描述或了解黑洞中心的奇点。虽然观测者可以向黑洞中心发送信号,但是黑洞内部仍然難以獲取資訊,至今只能單靠理論推測,無法取得實驗數據證明奇點確實存在。.

引力奇点和彭罗斯-霍金奇点定理 · 引力奇点和黑洞 · 查看更多 »

爱因斯坦场方程

愛因斯坦重力場方程是一組含有十個方程式的方程組,由愛因斯坦於1915年在廣義相對論中提出。此方程組描述了重力是由物質與能量所產生的時空彎曲所造成。也就是說,如同牛頓的萬有引力理論中質量作為重力的來源,亦即有質量就可以產生重力,愛氏的相對論理論更進一步的指出,動量與能量皆可做為重力的來源,並且將「重力場」詮釋成「時空彎曲」。所以當我們知道物質與能量在時空中是如何分布的,就可以計算出時空的曲率,而時空彎曲的結果即是重力。 愛因斯坦重力場方程是用來計算動量與能量所造成的時空曲率,再搭配測地線方程,就可以求出物體在重力場中的運動軌跡。這個想法與電磁學的想法是類似的:當我們知道了空間中的電荷與電流(電磁場的來源)是如何分布的,藉由馬克士威方程組,我們可以計算出電場與磁場,再藉由勞倫茲力方程,即可求出帶電粒子在電磁場中的軌跡。 僅在一些簡化的假設下,例如:假設時空是球對稱,此方程組才具有精確解。這些精確解常常被用來模擬許多宇宙中的重力現象,像是黑洞、膨脹宇宙、重力波。.

彭罗斯-霍金奇点定理和爱因斯坦场方程 · 爱因斯坦场方程和黑洞 · 查看更多 »

上面的列表回答下列问题

彭罗斯-霍金奇点定理和黑洞之间的比较

彭罗斯-霍金奇点定理有3个关系,而黑洞有90个。由于它们的共同之处3,杰卡德指数为3.23% = 3 / (3 + 90)。

参考

本文介绍彭罗斯-霍金奇点定理和黑洞之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »