之间形式科學和数学相似
形式科學和数学有(在联盟百科)5共同点: 信息论,统计学,计算理论,逻辑,抽象化。
信息论
信息论(information theory)是应用数学、電機工程學和计算机科学的一个分支,涉及信息的量化、存储和通信等。信息论是由克劳德·香农发展,用来找出信号处理与通信操作的基本限制,如数据压缩、可靠的存储和数据传输等。自创立以来,它已拓展应用到许多其他领域,包括统计推断、自然语言处理、密码学、神经生物学、进化论和分子编码的功能、生态学的模式选择、热物理、量子计算、语言学、剽窃检测、模式识别、异常检测和其他形式的数据分析。 熵是信息的一个关键度量,通常用一条消息中需要存储或传输一个的平均比特数来表示。熵衡量了预测随机变量的值时涉及到的不确定度的量。例如,指定擲硬幣的结果(两个等可能的结果)比指定掷骰子的结果(六个等可能的结果)所提供的信息量更少(熵更少)。 信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法。信息传输和信息压缩是信息论研究中的两大领域。这两个方面又由信道编码定理、信源-信道隔离定理相互联系。 信息论的基本内容的应用包括无损数据压缩(如ZIP文件)、有损数据压缩(如MP3和JPEG)、信道编码(如DSL))。这个领域处在数学、统计学、计算机科学、物理学、神经科学和電機工程學的交叉点上。信息论对航海家深空探测任务的成败、光盘的发明、手机的可行性、互联网的发展、语言学和人类感知的研究、对黑洞的了解,以及许多其他领域都影响深远。信息论的重要子领域有信源编码、信道编码、算法复杂性理论、算法信息论、資訊理論安全性和信息度量等。.
统计学
统计学是在資料分析的基础上,研究测定、收集、整理、归纳和分析反映數據資料,以便给出正确訊息的科學。這一门学科自17世纪中叶产生并逐步发展起来,它廣泛地應用在各門學科,從自然科学、社會科學到人文學科,甚至被用於工商業及政府的情報決策。隨著大数据(Big Data)時代來臨,統計的面貌也逐漸改變,與資訊、計算等領域密切結合,是資料科學(Data Science)中的重要主軸之一。 譬如自一組數據中,可以摘要並且描述這份數據的集中和離散情形,這個用法稱作為描述統計學。另外,觀察者以數據的形態,建立出一個用以解釋其隨機性和不確定性的數學模型,以之來推論研究中的步驟及母體,這種用法被稱做推論統計學。這兩種用法都可以被稱作為應用統計學。數理統計學则是討論背後的理論基礎的學科。.
计算理论
计算理论(Theory of computation)是數學的一個領域,和计算机有密切关系。其中的理论是现代密码协议、计算机设计和许多应用领域的基础。该领域主要关心三个方面的问题:.
逻辑
邏輯(λογική;Logik;logique;logic;意大利语、西班牙语、葡萄牙语: logica),又稱理則、論理、推理、推論,是对有效推論的哲學研究。邏輯被使用在大部份的智能活動中,但主要在哲學、心理、学习、推论统计学、脑科学、數學、語義學、 法律和電腦科學等領域內被視為一門學科。邏輯討論邏輯論證會呈現的一般形式,哪種形式是有效的,以及其中的謬論。 邏輯通常可分為三個部份:歸納推理、溯因推理和演繹推理。 在哲學裡,邏輯被應用在大多數的主要領域之中:形上學/宇宙論、本體論、知識論及倫理學。 在數學裡,邏輯是指形式逻辑和数理邏輯,形式逻辑是研究某個形式語言的有效推論。主要是演繹推理。 在辯證法中也會學習到邏輯。数理邏輯是研究抽象邏輯关系和数学基本的问题。 在心理、脑科学、語義學、 法律裡,是研究人类思想推理的处理。 在学习、推论统计学裡,是研究最大可能的结论。主要是歸納推理、溯因推理。 在電腦科學裡, 是研究各种方法的性质,可能性,和实现在机器上。主要是歸納推理、溯因推理,也有在歸納推理的研究。 从古文明开始(如古印度、中國和古希臘)都有對邏輯進行研究。在西方,亞里斯多德將邏輯建立成一門正式的學科,並在哲學中給予它一個基本的位置。.
抽象化
抽象化(Abstraction)是指以縮減一個概念或是一個現象的資訊含量來將其廣義化(Generalization)的過程,主要是為了只保存和一特定目的有關的資訊。例如,將一個皮製的足球抽象化成一個球,只保留一般球的屬性和行為等資訊。相似地,亦可以將快樂抽象化成一種情緒,以減少其在情緒中所含的資訊量。.
上面的列表回答下列问题
- 什么形式科學和数学的共同点。
- 什么是形式科學和数学之间的相似性
形式科學和数学之间的比较
形式科學有7个关系,而数学有219个。由于它们的共同之处5,杰卡德指数为2.21% = 5 / (7 + 219)。
参考
本文介绍形式科學和数学之间的关系。要访问该信息提取每篇文章,请访问: