我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

归并排序和算法分析

快捷方式: 差异相似杰卡德相似系数参考

归并排序和算法分析之间的区别

归并排序 vs. 算法分析

归并排序(Merge sort,或mergesort),是建立在归并操作上的一种有效的排序算法,效率為 O(n\log n) (大O符号)。1945年由约翰·冯·诺伊曼首次提出。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,且各层分治递归可以同时进行。. 在计算机科学中,算法分析(Analysis of algorithm)是分析执行一个给定算法需要消耗的计算资源数量(例如计算时间,存储器使用等)的过程。算法的效率或复杂度在理论上表示为一个函数。其定义域是输入数据的长度(通常考虑任意大的输入,没有上界),值域通常是执行步骤数量(时间复杂度)或者存储器位置数量(空间复杂度)。算法分析是计算复杂度理论的重要组成部分。 理论分析常常利用渐近分析估计一个算法的复杂度,并使用大O符号、大Ω符号和大Θ符号作为标记。举例,二分查找所需的执行步骤数量与查找列表的长度之对数成正比,记为 O(\log n),简称为「对数时间」。通常使用渐近分析的原因是,同一算法的不同具体实现的效率可能有差别。但是,对于任何给定的算法,所有符合其设计者意图的实现,它们之间的性能差异应当仅仅是一个系数。 精确分析算法的效率有时也是可行的,但这样的分析通常需要一些与具体实现相关的假设,称为计算模型。计算模型可以用抽象机器来定义,比如图灵机。或者可以假设某些基本操作在单位时间内可完成。 假设二分查找的目标列表总共有 n 个元素。如果我们假设单次查找可以在一个时间单位内完成,那么至多只需要 \log n + 1 单位的时间就可以得到结果。这样的分析在有些场合非常重要。 算法分析在实际工作中是非常重要的,因为使用低效率的算法会显著降低系统性能。在对运行时间要求极高的场合,耗时太长的算法得到的结果可能是过期或者无用的。低效率算法也会大量消耗计算资源。.

之间归并排序和算法分析相似

归并排序和算法分析有1共同点(的联盟百科): 大O符号

大O符号

大O符号(Big O notation),又稱為漸進符號,是用于描述函数渐近行为的数学符号。更确切地说,它是用另一个(通常更简单的)函数来描述一个函数数量级的渐近上界。在数学中,它一般用来刻画被截断的无穷级数尤其是渐近级数的剩余项;在计算机科学中,它在分析算法复杂性的方面非常有用。 大O符号是由德国数论学家在其1892年的著作《解析数论》(Analytische Zahlentheorie)首先引入的。而这个记号则是在另一位德国数论学家的著作中才推广的,因此它有时又称为朗道符号(Landau symbols)。代表“order of...”(……阶)的大O,最初是一个大写希腊字母“Ο”(omicron),现今用的是大写拉丁字母“O”。.

大O符号和归并排序 · 大O符号和算法分析 · 查看更多 »

上面的列表回答下列问题

归并排序和算法分析之间的比较

归并排序有5个关系,而算法分析有44个。由于它们的共同之处1,杰卡德指数为2.04% = 1 / (5 + 44)。

参考

本文介绍归并排序和算法分析之间的关系。要访问该信息提取每篇文章,请访问: