我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

归并排序和时间复杂度

快捷方式: 差异相似杰卡德相似系数参考

归并排序和时间复杂度之间的区别

归并排序 vs. 时间复杂度

归并排序(Merge sort,或mergesort),是建立在归并操作上的一种有效的排序算法,效率為 O(n\log n) (大O符号)。1945年由约翰·冯·诺伊曼首次提出。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,且各层分治递归可以同时进行。. 在计算机科学中,算法的时间复杂度是一个函数,它定性描述该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。例如,如果一个算法对于任何大小为 n (必須比 n0 大)的输入,它至多需要 的时间运行完毕,那么它的渐近时间复杂度是 O(n3)。 為了計算時間複雜度,我們通常會估計算法的操作單元數量,每個單元執行的時間都是相同的。因此,總運行時間和算法的操作單元數量最多相差一个常量系数。 相同大小的不同輸入值仍可能造成算法的執行時間不同,因此我們通常使用算法的,記為 T(n) ,定義為任何大小的輸入 n 所需的最大執行時間。另一種較少使用的方法是,通常有特別指定才會使用。時間複雜度可以用函數 T(n) 的自然特性加以分類,舉例來說,有著 T(n).

之间归并排序和时间复杂度相似

归并排序和时间复杂度有(在联盟百科)2共同点: 大O符号数组

大O符号

大O符号(Big O notation),又稱為漸進符號,是用于描述函数渐近行为的数学符号。更确切地说,它是用另一个(通常更简单的)函数来描述一个函数数量级的渐近上界。在数学中,它一般用来刻画被截断的无穷级数尤其是渐近级数的剩余项;在计算机科学中,它在分析算法复杂性的方面非常有用。 大O符号是由德国数论学家在其1892年的著作《解析数论》(Analytische Zahlentheorie)首先引入的。而这个记号则是在另一位德国数论学家的著作中才推广的,因此它有时又称为朗道符号(Landau symbols)。代表“order of...”(……阶)的大O,最初是一个大写希腊字母“Ο”(omicron),现今用的是大写拉丁字母“O”。.

大O符号和归并排序 · 大O符号和时间复杂度 · 查看更多 »

数组

在計算機科學中,陣列資料結構(array data structure),簡稱数组(Array),是由相同类型的元素(element)的集合所組成的資料結構,分配一块连续的内存来存储。利用元素的索引(index)可以计算出该元素對應的儲存地址。 最簡單的資料結構類型是一維陣列。例如,索引為0到9的32位元整數陣列,可作為在記憶體位址2000,2004,2008,...2036中,儲存10個變量,因此索引為i的元素即在記憶體中的2000+4×i位址。陣列第一個元素的記憶體位址稱為第一位址或基礎位址。 二维数组,对应于數學上的矩陣概念,可表示為二維矩形格。例如: a.

归并排序和数组 · 数组和时间复杂度 · 查看更多 »

上面的列表回答下列问题

归并排序和时间复杂度之间的比较

归并排序有5个关系,而时间复杂度有51个。由于它们的共同之处2,杰卡德指数为3.57% = 2 / (5 + 51)。

参考

本文介绍归并排序和时间复杂度之间的关系。要访问该信息提取每篇文章,请访问: