之间張量和线性映射相似
張量和线性映射有(在联盟百科)9共同点: 同构,向量空间,多重线性映射,导数,張量,矩阵,線性泛函,标量,欧几里得空间。
同构
在抽象代数中,同构(isomorphism)指的是一个保持结构的双射。在更一般的范畴论语言中,同构指的是一个态射,且存在另一个态射,使得两者的复合是一个恒等态射。 正式的表述是:同构是在数学对象之间定义的一类映射,它能揭示出在这些对象的属性或者操作之间存在的关系。若两个数学结构之间存在同构映射,那么这两个结构叫做是同构的。一般来说,如果忽略掉同构的对象的属性或操作的具体定义,单从结构上讲,同构的对象是完全等价的。.
向量空间
向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.
多重线性映射
在线性代数中,多重线性映射是有多个向量变量而对每个变量都是线性的函数。 n个变量的多线性映射也叫做n重线性映射。 如果所有变量属于同一个空间,可以考虑对称、反对称和交替的n重线性映射。后两个是一致的,如果底层的环(或域)有不同于二的特征,否则前两个是一致的。 一般讨论可见多重线性代数。.
多重线性映射和張量 · 多重线性映射和线性映射 ·
导数
导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.
張量
張量(tensor)是一个可用來表示在一些向量、純量和其他張量之間的線性關係的多线性函数,這些線性關係的基本例子有內積、外積、線性映射以及笛卡儿积。其坐标在 n 維空間內,有 n^r個分量的一種量,其中每個分量都是坐標的函數,而在坐標變換時,這些分量也依照某些規則作線性變換。r稱為該張量的秩或階(与矩阵的秩和阶均无关系)。 在同构的意义下,第零階張量(r.
矩阵
數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.
線性泛函
在線性代數中,線性泛函是指由向量空間到對應純量域的線性映射。在 \mathbbR^n ,若向量空間的向量以列向量表示;線性泛函則會以行向量表示,在向量上的作用則為它們的矩陣積。一般地,如果 V 是域 k 上的向量空間,線性泛函 f 是一个从 V 到 k 的函数,它有以下的线性特性: 所有從 V 到 k 的線性泛函集合, 記為 \operatorname_k(V,k), 本身即為一向量空間,稱為 V 的 (代數)對偶空間。.
标量
--(Scalar),又称--,是只有大小,没有方向,可用實數表示的一個量,實際上純量就是實數,純量這個稱法只是為了區別與向量的差別。标量可以是負數,例如溫度低於冰點。与之相对,向量(又称--)既有大小,又有方向。 在物理学中,标量是在坐标变换下保持不变的物理量。例如,欧几里得空间中两点间的距离在坐标变换下保持不变,相对论四维时空中在坐标变换下保持不变。与此相对的矢量,其分量在不同的坐标系中有不同的值,例如速度。标量可被用作定义向量空间。.
欧几里得空间
欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.
張量和欧几里得空间 · 欧几里得空间和线性映射 ·
上面的列表回答下列问题
- 什么張量和线性映射的共同点。
- 什么是張量和线性映射之间的相似性
張量和线性映射之间的比较
張量有67个关系,而线性映射有68个。由于它们的共同之处9,杰卡德指数为6.67% = 9 / (67 + 68)。
参考
本文介绍張量和线性映射之间的关系。要访问该信息提取每篇文章,请访问: