我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

弗朗索瓦·韦达和阿波罗尼奥斯

快捷方式: 差异相似杰卡德相似系数参考

弗朗索瓦·韦达和阿波罗尼奥斯之间的区别

弗朗索瓦·韦达 vs. 阿波罗尼奥斯

弗朗索瓦·韦达(法语:François Viète;拉丁語:Franciscus Vieta;),16世纪法国最有影响的数学家之一。他的研究工作为近代数学的发展奠定了基础。他也是名律师,是皇家顾问,曾为亨利三世和亨利四世效力。 1540年,韦达生于法国普瓦图地区,今旺代省的丰特奈-勒孔特(Fontenay-le-Comte),早年在普瓦捷学习法律,后任律师。数学是他的业余爱好。他是第一个有意识地、系统地使用符号的人。他不仅用字母表示未知量和未知量的乘幂,而且用来表示一般的系数。他把符号代数称为类的算术,以别于数的算术。他还发现了代数方程根与系数的关系的韦达定理。韦达对三角学也更进一步将已有的三角学系统化。在他对三角法研究的第一本著作《应用于三角形的数学法则》中,就有解直角三角形、斜三角形等的详述,并且还有平面三角形的正切定理、球面钝角三角形的余弦定理、许多三角恒等式以及差化积定理等。他并有系统地发展了利用全部六种三角函数求解各种平面与球面三角形的方法。1603年12月13日韦达在巴黎病逝。 著有《应用于三角形的数学定律》、《分析方法入门》。 韦达最早明确给出有关圆周率的无穷运算式,而且创造了一套十进分数表示法,促进了记数法的改革。之后,韦达用代数方法解决几何问题的思想由笛卡儿继承,发展成为解析几何。. 阿波罗尼奥斯(古希腊语:)(Apollonius of Perga)(前262年-前190年),又译为阿波罗尼乌斯,阿波罗尼等,古希腊几何学家,著有《圆锥曲线论》八卷,《论切触》(),等等。 在他的八卷本《圆锥曲线论》(第八卷失传)中,提出:.

之间弗朗索瓦·韦达和阿波罗尼奥斯相似

弗朗索瓦·韦达和阿波罗尼奥斯有1共同点(的联盟百科): 圓周率

圓周率

圓周率是一个数学常数,为一个圆的周长和其直径的比率,约等於3.14159。它在18世纪中期之后一般用希腊字母π指代,有时也拼写为“pi”()。 因为π是一个无理数,所以它不能用分数完全表示出来(即它的小数部分是一个无限不循环小数)。当然,它可以用像\frac般的有理数的近似值表示。π的数字序列被認為是随机分布的,有一种统计上特别的随机性,但至今未能证明。此外,π还是一个超越数——它不是任何有理数系数多项式的根。由於π的超越性质,因此不可能用尺规作图解化圆为方的问题。 几个文明古国在很早就需要计算出π的较精确的值以便于生产中的计算。公元5世纪时,南朝宋数学家祖冲之用几何方法将圆周率计算到小数点后7位数字。大约同一时间,印度的数学家也将圆周率计算到小数点后5位。历史上首个π的精确无穷级数公式(即π的莱布尼茨公式)直到约1000年后才由印度数学家发现。在20和21世纪,由于计算机技术的快速发展,借助计算机的计算使得π的精度急速提高。截至2015年,π的十进制精度已高达1013位。当前人类计算π的值的主要原因为打破记录、测试超级计算机的计算能力和高精度乘法算法,因为几乎所有的科学研究对π的精度要求都不会超过几百位。 因为π的定义中涉及圆,所以π在三角学和几何学的许多公式,特别是在圆形、椭球形或球形相關公式中广泛应用。由于用於特征值这一特殊作用,它也在一些数学和科学领域(例如数论和统计中计算数据的几何形状)中出现,也在宇宙学,热力学,力学和电磁学中有所出现。π的广泛应用使它成为科学界内外最广为人知的常数之一。人们已经出版了几本专门介绍π的书籍,圆周率日(3月14日)和π值计算突破记录也往往会成为报纸的新闻头条。此外,背诵π值的世界记录已经达到70,000位的精度。.

圓周率和弗朗索瓦·韦达 · 圓周率和阿波罗尼奥斯 · 查看更多 »

上面的列表回答下列问题

弗朗索瓦·韦达和阿波罗尼奥斯之间的比较

弗朗索瓦·韦达有55个关系,而阿波罗尼奥斯有13个。由于它们的共同之处1,杰卡德指数为1.47% = 1 / (55 + 13)。

参考

本文介绍弗朗索瓦·韦达和阿波罗尼奥斯之间的关系。要访问该信息提取每篇文章,请访问: