引力和穆斯堡尔效应
快捷方式: 差异,相似,杰卡德相似系数,参考。
引力和穆斯堡尔效应之间的区别
引力 vs. 穆斯堡尔效应
重力(Gravitation或Gravity),是指具有质量的物体之间相互吸引的作用,也是物体重量的来源。 引力与电磁力、弱相互作用力及强相互作用力一起构成自然界的四大基本相互作用。在这四种基本相互作用中,引力是最弱的一种,但同时也是一种长程有效作用力。在现代物理学中,引力一般由广义相对论来精确描述,认为引力反映了物体的惯性在弯曲时空中的表现。而经典力学中的牛顿万有引力定律则是对引力在通常物理条件下的极好的近似描述。 在地球上,地球对地面附近物体的万有引力赋予了物体的重量,并使物体落向地面。在宇宙中,引力让物质聚集而形成天体,同时也让天体之间相互吸引,形成按照轨道运转的天体系统。此外,月球以及太陽对地球上海水的引力,形成了地球上的潮汐。. 斯堡尔效应,即原子核辐射的无反冲共振吸收。这个效应首先是由德国物理学家穆斯堡尔于1958年首次在实验中实现的,因此被命名为穆斯堡尔效应。应用穆斯堡尔效应可以研究原子核与周围环境的超精细相互作用,是一种非常精确的测量手段,其能量分辨率可高达10-13,并且抗干扰能力强、实验设备和技术相对简单、对样品无破坏。由于这些特点,穆斯堡尔效应一经发现,就迅速在物理学、化学、生物学、地质学、冶金学、矿物学、地质学等领域得到广泛应用。近年来穆斯堡尔效应也在一些新兴学科,如材料科学和表面科学开拓了应用前景。 理论上,当一个原子核由激发态跃迁到基态,发出一个γ射线光子。当这个光子遇到另一个同样的原子核时,就能够被共振吸收。但是实际情况中,处于自由状态的原子核要实现上述过程是困难的。因为原子核在放出一个光子的时候,自身也具有了一个反冲动量,这个反冲动量会使光子的能量减少。同样原理,吸收光子的原子核光子由于反冲效应,吸收的光子能量会有所增大。这样造成相同原子核的发射谱和吸收谱有一定差异,所以自由的原子核很难实现共振吸收。迄今为止,人们还没有在气体和不太粘稠的液体中观察到穆斯堡尔效应。 1957年底,穆斯堡尔提出实现γ射线共振吸收的关键在于消除反冲效应。如果在实验中把发射和吸收光子的原子核置于固体晶格中,那么出现反冲效应的就不再是单一的原子核,而是整个晶体。由于晶体的质量远远大于单一的原子核的质量,反冲能量就减少到可以忽略不计的程度,这样就可以实现穆斯堡尔效应。实验中原子核在发射或吸收光子时无反冲的概率叫做无反冲分数f,无反冲分数与光子能量、晶格的性质以及环境的温度有关。 穆斯堡尔使用191Os(锇)晶体作γ射线放射源,用191Ir(铱)晶体作吸收体,于1958年首次在实验上实现了原子核的无反冲共振吸收。为减少热运动对结果的影响,放射源和吸收源都冷却到88K。放射源安装在一个转盘上,可以相对吸收体作前后运动,用多普勒效应调节γ射线的能量。191Os经过β-衰变成为191Ir的激发态,191Ir的激发态可以发出能量为129 keV的γ射线,被吸收体吸收。实验发现,当转盘不动,即相对速度为0时共振吸收最强,并且吸收谱线的宽度很窄,每秒几厘米的速度就足以破坏共振。除了191Ir外,穆斯堡尔还观察到了187Re、177Hf、166Er等原子核的无反冲共振吸收。由于这些工作,穆斯堡尔被授予1961年的诺贝尔物理学奖。 截至2005年上半年,人们已经在固体和粘稠液体中实现了穆斯堡尔效应,样品的形态可以是晶体、非晶体、薄膜、固体表层、粉末、颗粒、冷冻溶液等等,涉及40余种元素90余种同位素的110余个跃迁。然而大部分同位素只能在低温下才能实现穆斯堡尔效应,有的需要使用液氮甚至液氦对样品进行冷却。在室温下只有57Fe、119Sn、151Eu三种同位素能够实现穆斯堡尔效应。其中57Fe的 14.4 keV 跃迁是人们最常用的、也是研究最多的谱线。 穆斯堡尔效应对环境的依赖性很高。细微的环境条件差异会对穆斯堡尔效应产生显著的影响。在实验中,为减少环境带来的影响,需要利用多普勒效应对γ射线光子的能量进行细微的调制。具体做法是令γ射线辐射源和吸收体之间具有一定的相对速度,通过调整v的大小来略微调整γ射线的能量,使其达到共振吸收,即吸收率达到最大,透射率达到最小。透射率与相对速度之间的变化曲线叫做穆斯堡尔谱。应用穆斯堡尔谱可以清楚地检查到原子核能级的移动和分裂,进而得到原子核的超精细场、原子的价态和对称性等方面的信息。应用穆斯堡尔谱研究原子核与核外环境的超精细相互作用的学科叫做穆斯堡尔谱学。 穆斯堡尔谱的宽度非常窄,因此具有极高的能量分辨本领。例如57Fe的 14.4 keV 跃迁,穆斯堡尔谱宽度与γ射线的能量之比ΔE/E~10-13,67Zn的 93.3 keV 跃迁ΔE/E~10-15,107Ag的93 keV 跃迁ΔE/E~10-22。因此穆斯堡尔效应一经发现就在各种精密频差测量中得到广泛应用。例如:.
之间引力和穆斯堡尔效应相似
引力和穆斯堡尔效应有(在联盟百科)5共同点: 势能,引力,物理学,相对论,质量。
势能(Potential Energy),亦稱--,是储存于一物理系统内的一种能量,是一个用来描述物体在保守力场中做功能力大小的物理量。保守力作功与路径无关,故可定义一个仅与位置有关的函数,使得保守力沿任意路径所做的功,可表达为这两点函数值的差,这个函数便是势能。 从物理意义上来说,势能表示了物体在特定位置上所储存的能量,描述了作功能力的大小。在适当的情况下,势能可以转化为诸如动能、内能等其他能量。.
势能和引力 · 势能和穆斯堡尔效应 · 查看更多 »
重力(Gravitation或Gravity),是指具有质量的物体之间相互吸引的作用,也是物体重量的来源。 引力与电磁力、弱相互作用力及强相互作用力一起构成自然界的四大基本相互作用。在这四种基本相互作用中,引力是最弱的一种,但同时也是一种长程有效作用力。在现代物理学中,引力一般由广义相对论来精确描述,认为引力反映了物体的惯性在弯曲时空中的表现。而经典力学中的牛顿万有引力定律则是对引力在通常物理条件下的极好的近似描述。 在地球上,地球对地面附近物体的万有引力赋予了物体的重量,并使物体落向地面。在宇宙中,引力让物质聚集而形成天体,同时也让天体之间相互吸引,形成按照轨道运转的天体系统。此外,月球以及太陽对地球上海水的引力,形成了地球上的潮汐。.
引力和引力 · 引力和穆斯堡尔效应 · 查看更多 »
物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.
引力和物理学 · 物理学和穆斯堡尔效应 · 查看更多 »
对论(Theory of relativity)是关于时空和引力的理论,主要由愛因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非古典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。.
引力和相对论 · 相对论和穆斯堡尔效应 · 查看更多 »
在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.
引力和质量 · 穆斯堡尔效应和质量 · 查看更多 »
上面的列表回答下列问题
- 什么引力和穆斯堡尔效应的共同点。
- 什么是引力和穆斯堡尔效应之间的相似性
引力和穆斯堡尔效应之间的比较
引力有80个关系,而穆斯堡尔效应有56个。由于它们的共同之处5,杰卡德指数为3.68% = 5 / (80 + 56)。
参考
本文介绍引力和穆斯堡尔效应之间的关系。要访问该信息提取每篇文章,请访问: